

Technical Information

Schöck Isokorb® T for reinforced concrete structures

March 2020

Telephone hotline for design support services Telephone: 01865 290 890 Fax: 01865 290 899 design@schoeck.co.uk

Planning tools –

downloads and requests Telephone: 01865 290 890 Fax: 01865 290 899 design@schoeck.co.uk www.schoeck.co.uk

CPD Seminars and on-site consultation Telephone: 01865 290 890 Fax: 01865 290 899 www.schoeck.co.uk

Planning and consulting service

The engineers of Schöck's application engineering department would be very happy to advise you on static, structural and building-physics questions and will produce for you proposals for your solution with calculations and detailed drawings. For this please send your planning documentation (general arrangements, sections, static data) with the address of the building project to:

Schöck Ltd

Staniford House 4 Wedgwood Road Bicester Oxfordshire OX26 4UL

Telephone hotline for design support services

Tel.: 01865 290 890 Fax: 01865 290 899 E-Mail: design@schoeck.co.uk

Planning tools - downloads and requests

Tel.: 01865 290 890 Fax: 01865 290 899 E-Mail: design@schoeck.co.uk Web: www.schoeck.co.uk

CPD Seminars and on-site consultation

Tel.: 01865 290 890 Fax: 01865 290 899 Web: www.schoeck.co.uk

Notes | Symbols

Technical Information

- This Technical Information on the respective product application is valid only if complete and therefore may only be reproduced as a whole. With texts and graphics published solely as extracts there is a danger of communicating insufficient or even misleading information. Therefore dissemination is the sole responsibility of the user or the person carrying out the process!
- This technical information is valid solely for the United Kingdom and takes into account country-specific standards and product-specific accreditations / approvals.
- If the installation takes place in another country, then the technical Information applicable for the respective country must be used.
- The currently valid version of the technical information must be used. The current version can be found at www.schoeck.co.uk/download

Schöck Isokorb® T for reinforced concrete structures

Some connection situations cannot be realised with those standard product variants presented in this Technical Information. In this case special designs can be requested from the application engineering department (for contact details see page3). This applies, for example, with additional requirements as a result of prefabricated construction (limitations due to technical manufacturing constraints or through transportation width), which can possibly be met using coupler bars. The bending of bars required for special constructions are carried out in the factory in each case on the individual steel bar. With this, it is monitored and ensured that the conditions of the general building supervisory approvals and of BS EN 1992 1-1 (EC2) and BS EN 1992-1-1/NA are observed with regard to bending of reinforcing steel.

Attention: If reinforcing steel in the Schöck Isokorb[®] is bent or bent and bent back on-site, the observation and the monitoring of the respective conditions lie outside the influence of Schöck Bauteile GmbH. Therefore, in such cases, the warranty is invalidated.

Note on shortening threaded rods

The threaded rods may be shortened on site provided at least two threads remain visible after installation, levelling and final tightening of the balcony structure. Nuts must be re-checked after cutting to ensure they have remained fully tightened.

Tags

🛕 Hazard note

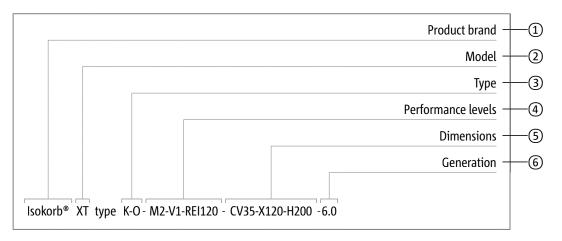
The yellow triangle with the exclamation mark indicates a hazard note. This means there is a danger to life and limb if compliance is not observed.

🧾 Info

The square with "i" indicates important information which must be read in conjuction with the design.

🗹 Check list

The square with tick indicates the check list. Here the essential points of the design are summarised.


Table of contents

	Page
Summary	6
Explanation for the naming of Schöck Isokorb® types	6
Summary of types	8
Fire protection	13
Reinforced concrete – reinforced concrete	17
Planning information	18
Schöck Isokorb® T type K:	27
Schöck Isokorb® T type C (formerly type K-Eck)	49
Schöck Isokorb® T type K-U, K-O	61
Schöck Isokorb® T type Q	93
Schöck Isokorb® T type Q-P	109
Schöck Isokorb® T type H	125
Schöck Isokorb® T type Z	135
Schöck Isokorb® T type D	141
Schöck Isokorb® T type A	151
Schöck Isokorb® T type F	153
Schöck Isokorb® T type O	155
Schöck Isokorb® T type B (formerly type S)	157
Schöck Isokorb® T type W	165

Explanation for the naming of Schöck Isokorb® types

The systematic naming convention for the Schöck Isokorb[®] product group has changed. This page contains information about the name components for easier conversion.

The type designation has a strict structure. However, the sequence of the name components always remains the same.

1 Product brand

Schöck Isokorb®

2 Model

In future, the model designation will be a fixed name component of every Isokorb[®]. It stands for a core characteristic of the product. The corresponding abbreviation will always be positioned before the type word.

Model	Core characteristics of the products	Connection	Components
ХТ	For extra thermal separation	Reinforced concrete – reinforced concrete, Steel – reinforced concrete	Balcony, access walkway, canopy, floor slab, parapet, balustrade, corbel, beam, wall
СХТ	With Combar® for extra thermal separation	Reinforced concrete – Reinforced concrete	Balcony, walkway, canopy
т	For thermal separation	Reinforced concrete – reinforced concrete, Steel – reinforced concrete, Steel – steel	Balcony, access walkway, canopy, floor slab, parapet, balustrade, corbel, beam, wall
RT	For reconstruction of compo- nents with a thermal separation	Reinforced concrete – reinforced concrete, Steel – reinforced concrete	Balcony, walkway, canopy, beam

③ Туре

The type is a combination of the following name components:

Basic type

static or geometric connection variant

	Basic type				
K	K Balcony, canopy – cantilevered A Parapet, balustrade		Parapet, balustrade		
Q	Balcony, canopy – supported (shear force)	alcony, canopy – supported (shear force) B Beam, downstand beam			
С	Corner balcony	W	Shear wall		
Н	Balcony with horizontal loads	SK	SK Steel balcony – cantilevered		
Z	Balcony with intermediate insulation	SQ	SQ Steel balcony – supported (shear force)		
D	Floor slab – continuous (indirectly mounted)	S	Steel structure		

	Static connection variant			
Z	Restraint-free			
Р	Punctual			
V	Shear force			
N	Normal force			

	Geometric connection variant
L	Arrangement left of viewpoint
R	Arrangement right of viewpoint
U	Balcony with height offset downwards or wall connection
0	Balcony with height offset upwards or wall connection

4 Performance levels

Performance levels include load-bearing levels and fire protection. The various load-bearing levels of an Isokorb[®] type are numbered consecutively, beginning with 1 for the lowest load-bearing level. Different Isokorb[®] types with the same load-bearing level do not have the same load-bearing capacity. The load-bearing level must always be determined via the design and calculation tables or the calculation program.

The load-bearing level has the following name components:

- Main load-bearing level: Combination of internal static force and number
- Secondary load-bearing level: Combination of internal static force and number

	Internal static force of the main load capacity			
М	Moment			
MM	Moment with positive or negative force			
V	Shear force			
VV	Shear force with positive or negative force			
Ν	Normal force			
NN	Normal force with positive or negative force			

	Internal static force of the secondary load-bearing level		
V	Shear force		
VV	Shear force with positive or negative force		
N	Normal force		
NN	Normal force with positive or negative force		

The name component for the fire protection contains the fire resistance class or RO if no fire protection is required.

	Fire resistance class
REI	R – load bearing capacity, E – integrity, I – insulation under the effects of a fire
RO	No fire protection

(5) Dimensions

The following name components are part of the dimensions:

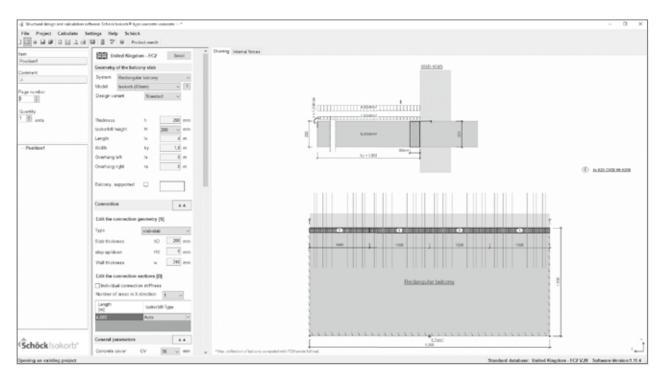
- Concrete cover CV
- Bond length LR, bond height HR
- Insulating element thickness X, height H, length L, width W
- Diameter of thread D

6 Generation

Each type designation ends with a generation number.

Application	Production type	Schöck Iso	korb® type		
Free cantilevered balconies					
T type K	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	T type K	H TE comzas	Page	Z
Free cantilevered balconies with corner					
	Building site In-situ concrete balconies Precast concrete work	T type C	HTE	Page	4
1.992.2	Prefabricated component balconies				
Free cantilevered balconies with height off	set downwards or wall connection				
T type K-U	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies	T type K-U	H TE CONZES	Page	e
Free cantilevered balconies with height off	set unwards or wall connection				
	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies	T type K-O		Page	e
Supported balconies	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies	T type Q	HTE COMAZES	Page	9
	Completely prefabricated balconies Prefabricated component balconies				

Supported balconies with positive and negative shear force Precast concrete work Completely prefabricated balconies Precast concrete work Completely prefa	Application	Production type	Schöck Isokorb® type				
Building site T type Q-VV Page 93 In-situ concrete balconies Precast concrete work Completely prefabricated balconies Page 93 Zero-stress shear force connection Building site T type Q-Z Page 93 Im-situ concrete balconies Precast concrete work Completely prefabricated balconies T type Q-Z Page 93 Supported balconies with point load peaks Precast concrete work Completely prefabricated balconies Precast concrete work Page 93 Supported balconies with point load peaks Building site T type Q-P Page 93 Supported balconies with point load peaks Building site T type Q-P Page 109 Supported balconies with positive and negative shear force with point load peaks Building site T type Q-P Page 109 Supported balconies with positive and negative shear force with point load peaks Building site T type Q-P Page 109 Constraint-free transverse force connection with point peak loads Precast concrete work Completely prefabricated balconies Precast concrete work Page 109 Constraint-free transverse force connection with point peak loads T t							
In-situ concrete balconies Precast concrete work Completely prefabricated balconies Completely prefabricated balconies Zero-stress shear force connection Building site In-situ concrete balconies T type Q-Z Precast concrete work Completely prefabricated balconies Supported balconies with point load peaks Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Precast concrete work Supported balconies with point load peaks Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies	Supported balconies with positive and negation	tive shear force					
Image: Supported balconies with point load peaks Building site Type Q-P Page 93 Supported balconies with point load peaks Building site Type Q-P Page 93 Supported balconies with point load peaks Building site Type Q-P Page 93 Supported balconies with point load peaks Building site Type Q-P Page 109 Image: Perfabricated component balconies Precast concrete work Completely prefabricated balconies Type Q-P Page 109 Image: Perfabricated component balconies Precast concrete work Completely prefabricated balconies Precast concrete work Page 109 Image: Perfabricated component balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies Page 109 Image: Perfabricated component balconies Prefabricated component balconies Prefabricated component balconies Page 109 Image: Prefabricated component balconies Prefabricated component balconies Prefabricated component balconies Prefabricated balconies Prefabricated component balconies Prefabricated balconies Prefabricated balconies Prefabricated balconies Image: Prefabrica		Building site	T type Q-VV	Page	93		
Image: Completely prefabricated balonies Prefabricated component balconies Zero-stress shear force connection Image: Completely prefabricated component balconies Precast concrete work Completely prefabricated balonies Precast concrete work Completely prefabricated balonies Precast concrete work Completely prefabricated balonies Prefabricated component balconies Prefabricated balconies Prefabricated balconies		In-situ concrete balconies					
Zero-stress shear force connection Building site T type Q-Z Page 93 Supported balconies with point load peaks Prefabricated balconies T type Q-P Page 109 Supported balconies with point load peaks Building site T type Q-P Page 109 Freast concrete work Completely prefabricated balconies T type Q-P Page 109 Supported balconies with point load peaks Building site T type Q-P Page 109 Freast concrete work Completely prefabricated balconies Precast concrete work Completely prefabricated balconies Precast concrete work Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete work T type Q-P-VV Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete work T type Q-P-VV Page 109 Fread balconies Precast concrete work Completely prefabricated balconies T type Q-P-VV Page 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies T type Q-P-VV Page 109 In-situ concrete balconies		Precast concrete work					
Zero-stress shear force connection Building site T type Q-Z Page 93 Image: Supported balconies with point load peaks Precast concrete work Completely prefabricated balconies T type Q-P Page 109 Supported balconies with point load peaks Building site T type Q-P Page 109 Supported balconies with point load peaks Precast concrete work Completely prefabricated balconies T type Q-P Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete work Completely prefabricated balconies T type Q-P.VV Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete work T type Q-P.VV Page 109 Image: T type Q-P.VV Page 109 Precast concrete work Completely prefabricated balconies T type Q-P.VV Page 109 Image: T type Q-P.VV Page 0.92 Precast concrete work Completely prefabricated balconies T type Q-P.VV Page 109 Image: T type Q-P.VV Page 0.92 Precast concrete work Completely prefabricated balconies T type Q-P.VV Page 109 Image: T type Q-P.VV		Completely prefabricated balconies					
Building site T type Q-Z Page 93 Precast concrete work Completely prefabricated balconies Precast concrete work Precast concrete work Supported balconies with point load peaks Building site T type Q-P Page 109 Image: Supported balconies with point load peaks Building site T type Q-P Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete work T type Q-P.VV Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete work T type Q-P.VV Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete work T type Q-P.VV Page 109 Supported balconies with positive and negative shear force work Completely prefabricated balconies T type Q-P.VV Page 109 Precast concrete work Completely prefabricated balconies T type Q-P.VV Page 109 Supported balconies with positive concrete balconies Precast concrete work Completely prefabricated balconies T type Q-PZ Page 109 Freast concrete work Completely prefabricated balconies	. 91	Prefabricated component balconies					
Building site T type Q-Z Page 93 Precast concrete work Completely prefabricated balconies Precast concrete work Precast concrete work Supported balconies with point load peaks Building site T type Q-P Page 109 Image: Supported balconies with point load peaks Building site T type Q-P Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete work T type Q-P.VV Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete work T type Q-P.VV Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete work T type Q-P.VV Page 109 Supported balconies with positive and negative shear force work Completely prefabricated balconies T type Q-P.VV Page 109 Precast concrete work Completely prefabricated balconies T type Q-P.VV Page 109 Supported balconies with positive concrete balconies Precast concrete work Completely prefabricated balconies T type Q-PZ Page 109 Freast concrete work Completely prefabricated balconies							
In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated balconies Supported balconies with point load peaks In-situ concrete balconies In-situ concrete balconies Precast concrete work Completely prefabricated balconies T type Q-P Page 109 Prefabricated component balconies Supported balconies with positive and negative shear force with point load peaks T type Q-P-VV Precast concrete work Completely prefabricated balconies Completely prefabricated balconies Precast concrete work	Zero-stress shear force connection						
Precast concrete work Completely prefabricated balconies Prefabricated component balconiesSupported balconies with point load peaksUpper Q-PBuilding site Insitu concrete balconies Precast concrete work Completely prefabricated balconiesType Q-PPage109Supported balconies with positive and negative shear force with point load peaksBuilding site Insitu concrete balconiesType Q-PPage109Supported balconies with positive and negative shear force with point load peaksPrecast concrete work Completely prefabricated balconiesType Q-P-VVPage109Supported balconies with positive and negative shear force with point load peaksPrecast concrete work Completely prefabricated balconiesType Q-P-VVPage109Upp Q-P-VVBuilding site Insitu concrete balconiesInsitu concrete balconiesType Q-P2Page109Upp Q-P-VVBuilding site Insitu concrete balconiesPrecast concrete work Completely prefabricated balconiesType Q-P2Page109Upp Q-P2Building site Insitu concrete balconiesPrecast concrete work Completely prefabricated balconiesType Q-P2Page109		Building site	T type Q-Z	Page	93		
Image: Supported balconies with point load peaks Building site Type Q-P Page 109 Image: Supported balconies with point load peaks Precast concrete balconies Type Q-P Page 109 Image: Supported balconies with positive and negative shear force with point load peaks Precast concrete work Type Q-P.VV Page 109 Image: Supported balconies with positive and negative shear force with point load peaks Image: Supported balconies Image: Supported balco		In-situ concrete balconies					
Prefabricated component balconies Supported balconies with point load peaks Image:		Precast concrete work					
Supported balconies with point load peaks Building site T type Q-P Page 109 Image: Supported balconies with point load peaks Precast concrete work Completely prefabricated balconies T type Q-P Page 109 Supported balconies with positive and negative shear force with point load peaks Precast concrete balconies T type Q-P-VV Page 109 Supported balconies with positive and negative shear force with point load peaks Building site T type Q-P-VV Page 109 Image: I		Completely prefabricated balconies					
Building site T type Q-P Page 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies Completely prefabricated component balconies Precast concrete work In-situ concrete balconies Supported balconies with positive and negative shear force with point load peaks T type Q-P-VV Page 109 In-situ concrete balconies In-situ concrete balconies T type Q-P-VV Page 109 In-situ concrete balconies In-situ concrete balconies T type Q-P-VV Page 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies T type Q-P-VV Page 109 Constraint-free transverse force connection with point peak loads In-situ concrete balconies T type Q-PZ Page 109 In-situ concrete balconies Prefabricated component balconies T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies T type Q-PZ Page 109	31 · · ·	Prefabricated component balconies					
Building site T type Q-P Page 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies Completely prefabricated component balconies Precast concrete work In-situ concrete balconies Supported balconies with positive and negative shear force with point load peaks T type Q-P-VV Page 109 In-situ concrete balconies In-situ concrete balconies T type Q-P-VV Page 109 In-situ concrete balconies In-situ concrete balconies T type Q-P-VV Page 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies T type Q-P-VV Page 109 Constraint-free transverse force connection with point peak loads In-situ concrete balconies T type Q-PZ Page 109 In-situ concrete balconies Prefabricated component balconies T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies T type Q-PZ Page 109							
In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated balconies Supported balconies with positive and negative shear force with point load peaks T type Q-P-VV Precast concrete work Precast concrete work In-situ concrete balconies T type Q-P-VV Precast concrete work Precast concrete work Completely prefabricated balconies Precast concrete work Constraint-free transverse force connection with point peak loads T type Q-PZ In-situ concrete balconies Precast concrete work Completely prefabricated balconies T type Q-PZ Precast concrete work Precast concrete work Completely prefabricated balconies T type Q-PZ Precast concrete work Precast concrete work Completely prefabricated balconies T type Q-PZ	Supported balconies with point load peaks						
Image: Precast concrete work Completely prefabricated balconies Supported balconies with positive and negative shear force with point load peaks Type Q-P-VV Image: Precast concrete balconies Precast concrete balconies Image: Precast concrete balconies Precast concrete balconies Image: Precast concrete balconies Precast concrete balconies Precast concrete balconies Precast concrete work Completely prefabricated balconies Precast concrete work Completely prefabricated balconies Precast concrete work Completely prefabricated component balconies Precast concrete work Completely prefabricated component balconies Precast concrete work Completely prefabricated balconies Precast concrete work Constraint-free transverse force connection with point peak loads Type Q-PZ Image: Precast concrete work Image: Precast concrete work Completely prefabricated balconies Precast concrete work Image: Precast concrete work Precast concrete work Image: Precast concrete work Precast concrete work Completely prefabricated balconies Precast concrete work Image: Precast concrete work Precast concrete work Image: Precast concrete work		Building site	T type Q-P	Page	109		
Image: Trype Q-P Completely prefabricated balconies Supported balconies with positive and negative shear force with point load peaks Image: Trype Q-P-VV Building site Image: Trype Q-P-VV Page 109		In-situ concrete balconies					
Image: Supported balconies with positive and negative shear force with point load peaks Supported balconies with positive and negative shear force with point load peaks Image: Supported balconies with positive and negative shear force with point load peaks Image: Supported balconies with positive and negative shear force with point load peaks Image: Supported balconies with positive and negative shear force work Image: Supported balconies with positive and negative shear force work Completely prefabricated balconies Precast concrete work Completely prefabricated component balconies Image: Supported balconies with point peak loads Image: Supported balconies with point pea		Precast concrete work					
Supported balconies with positive and negative shear force with point load peaks T type Q-P-VV Page 109 In-situ concrete balconies In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies Page 109 Constraint-free transverse force connection with point peak loads Building site T type Q-PZ Page 109 In-situ concrete balconies Prefabricated component balconies Prefabricated component balconies Page 109 In-situ concrete balconies Prefabricated component balconies Page 109 109 In-situ concrete balconies Prefabricated component balconies Page 109 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies T type Q-PZ Page 109		Completely prefabricated balconies					
Building site T type Q-P-VV Page 109 In-situ concrete balconies Precast concrete work Precast concrete work Completely prefabricated balconies Prefabricated component balconies Prefabricated component balconies T type Q-PZ Page 109 In-situ concrete work Completely prefabricated balconies Prefabricated component balconies Prefabricated component balconies T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work T type Q-PZ Completely prefabricated balconies Page 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies Page 109		Prefabricated component balconies					
Building site T type Q-P-VV Page 109 In-situ concrete balconies Precast concrete work Precast concrete work Completely prefabricated balconies Prefabricated component balconies Prefabricated component balconies T type Q-PZ Page 109 In-situ concrete work Completely prefabricated balconies Prefabricated component balconies Prefabricated component balconies T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work T type Q-PZ Completely prefabricated balconies Page 109 In-situ concrete balconies Precast concrete work Completely prefabricated balconies Page 109							
In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies Prefabricated component balconies In-situ concrete balconies Prefabricated balconies Prefabricated component balconies In-situ concrete balconies Precast concrete work Completely prefabricated balconies Precast concrete balconies Precast concrete work Completely prefabricated balconies Precast concrete work Completely prefabricated balconies	Supported balconies with positive and negation	tive shear force with point load peaks					
Image: Precast concrete work Completely prefabricated balconies Completely prefabricated component balconies Prefabricated component balconies Constraint-free transverse force connection with point peak loads Image: Precast concrete work Image: Precast concrete work Building site Image: Image: Precast concrete work Image: Precast concrete work Completely prefabricated balconies Precast concrete work Completely prefabricated balconies Image: Precast concrete work Completely prefabricated balconies Image: Precast concrete work Precast concrete work Completely prefabricated balconies		Building site	T type Q-P-VV	Page	109		
T type Q-P-VV Completely prefabricated balconies Prefabricated component balconies Prefabricated component balconies Constraint-free transverse force connection with point peak loads Building site T type Q-PZ In-situ concrete balconies Precast concrete work In-situ concrete balconies Precast concrete work Completely prefabricated balconies In-situ concrete balconies		In-situ concrete balconies					
Prefabricated component balconies Constraint-free transverse force connection with point peak loads Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies		Precast concrete work					
Prefabricated component balconies T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work In-situ concrete balconies Completely prefabricated balconies Completely prefabricated balconies In-situ concrete balconies		Completely prefabricated balconies					
Building site T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work Frecast concrete work Completely prefabricated balconies Completely prefabricated balconies		Prefabricated component balconies					
Building site T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work Frecast concrete work Completely prefabricated balconies Completely prefabricated balconies							
Building site T type Q-PZ Page 109 In-situ concrete balconies Precast concrete work Frecast concrete balconies Completely prefabricated balconies Completely prefabricated balconies	Constraint-free transverse force connection with point peak loads						
Precast concrete work T type Q-PZ Precast concrete work Completely prefabricated balconies			T type Q-PZ	Page	109		
T type Q-PZ Completely prefabricated balconies		In-situ concrete balconies					
T LYPE Q-PZ		Precast concrete work					
Design and the second s		Completely prefabricated balconies					
Pretabricated component balconies		Prefabricated component balconies					


Application	Production type	Schöck Isokorb® type					
Addition for horizontal loads	Addition for horizontal loads						
T type H	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	T type H	Page 125				
Addition as insulating spacer without reinfor	cement						
	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	T type Z	Page 135				
Continuous floors with bending momemts an	Building site In-situ concrete balconies Precast concrete work Completely prefabricated balconies Prefabricated component balconies	T type D	Page 141				
Balustrades and parapets							
T type A	Building site In-situ concrete Precast concrete work Completely prefabricated part	T type A	Page 151				
For attached balustrades							
T type F	Building site In-situ concrete Precast concrete work Completely prefabricated part	T type F	Page 153				

Application	Production type	Schöck Isokorb® type	
Corbel			
T type 0	Building site In-situ concrete Precast concrete work Completely prefabricated part	T type O	Page 155
Free cantilevered downstand beams and rein	forced concrete beams		
T type B	Building site In-situ concrete Precast concrete work Completely prefabricated part	T type B	Page 157
Free cantilevered shear walls			
T type W	Building site In-situ concrete Precast concrete work Completely prefabricated part	T type W	Page 165

Design software

The Schöck Isokorb® design software provides the rapid design of thermally separated structures.

The Schöck Isokorb[®] design software is available as a free download and can also be applied for on DVD. It runs under MS Windows using MS Framework 4.6.1.

Software

- Administrator rights are required for installation of the software.
- Upwards from Windows 7, with an update, the software is to be started using administrator rights (right mouse click on Schöck Icon; selection: carry out using administrator rights).

Fire protection configuration

Fire protection configuration Schöck Isokorb® reinforced concrete - reinforced concrete

The Schöck Isokorb[®] comes as standard with a fire protection configuration (-REI120).

With fire protection, e.g. T type K-M4-V1-REI120-CV35-X80-H180-6.0

For this purpose fire protection boards are mounted on the upper and lower sides of the Schöck Isokorb® (see figure). Prerequisite for the fire resistance classification of the balcony connection is that the balcony slab and the ceiling also fulfil the requirements for the necessary fire resistance class according to BS EN 1992-1-1 and -2 (EC 2). If, in addition to the load-bearing capacity (R), integrity (E) and insulation (I) are also required in case of fire, then the cutouts between the Schöck Isokorb® are to be closed, e.g. using the Schöck Isokorb[®] T type Z with the fire protection configuration.

The Schöck Isokorb® T has been tested in room closure configuration on the basis of floors according to BS EN 1365-2. According to BS EN 13501-2 only the requirement R (load-bearing capacity in the case of fire) is required. The basis for this test is BS EN 1365-5. The fire protection of the Schöck Isokorb[®] is additionally further tested on the basis of floors according to BS EN 1365-2. From this results the classification REI.

(R - load-bearing capacity, E - integrity, I - insulation under the influence of fire.)

The requirement from the fire tests with Schöck Isokorb[®] with flush integrated lateral fire protection bands or 10 mm projecting fire protection boards has been implemented. The integrated fire protection bands made from material forming insulation layers or respectively the 10 mm projecting fire protection boards on the upper side of the Schöck Isokorb® ensure that the joints, which have opened due to the effect of the fire, are closed. Thus the room integrity and the insulation in the case of fire are ensured (see figures below).

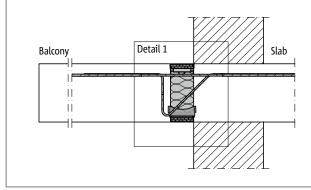


Fig. 1: Schöck Isokorb® T type K for REI120: Fire protection board top and bottom; lateral integrated fire protection bands

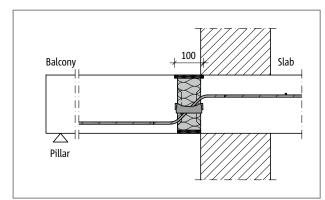


Fig. 3: Schöck Isokorb® T type Q for REI120: Fire protection board top, projecting laterally

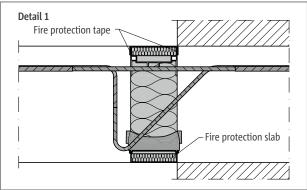


Fig. 2: Schöck Isokorb® T type K for REI120: Detail 1

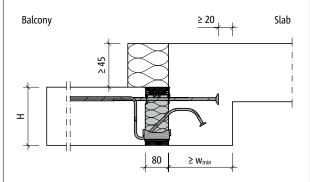


Fig. 4: Schöck Isokorb® T type K U for REI120: Fire protection board top and bottom; lateral integrated fire protection bands

ire protection

Fire protection classes | Balcony fire protection configuration REI120

Fire protection classes REI120, R90, EI120

The reaction to fire of structural components is classified on the basis of the European Standard BS EN 13501-2.

The fire resistance / behaviour of components is classified on the basis of European standard DIN EN 13501-2. The European classification system is on par alongside the previous classification system as per DIN 4102.

Users have the option for verification of fire behaviour or fire resistance based either on DIN 4102 or on DIN EN 13501-1 (fire behaviour) and/or DIN EN 13501-2 (fire resistance).

The Schöck Isokorb® T achieves the following fire protection classes:

Schöck Isokorb® T type	K, C, Q, H, D	B, W
Fire protection class	REI120	R 90

Schöck Isokorb® T type	2
Fire protection class	EI120

Fire protection configuration REI120

The Schöck Isokorb[®] can be delivered with a fire protection configuration (-REI120). Then the balcony also achieves the fire protection class REI120, so far as, on the floor and balcony sides, REI120 is achieved.

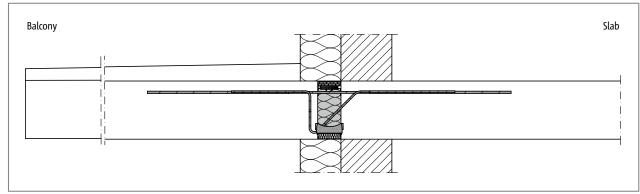


Fig. 5: Schöck Isokorb® T type K for REI120: Balcony connection REI120

Fire protection

▶ For the insulation between the Schöck Isokorb® there is Schöck Isokorb® supplementary type Z (see page135) available with fire protection performance. The rating of the Schöck Isokorb® is relevant for the fire protection of the connection.

Notes

🚺 Notes

- ▶ The Schöck Isokorb[®] type H is as a basic principle, to be combined with Schöck Isokorb[®] T types with 1 m length.
- The Schöck Isokorb® T types Q-P, Q-P-VV, Q-PZ can be used separately as long as the mode of operation of the load-bearing system is so selected that the load application and load transfer is ensured in the designated floor and balcony side connection areas. The slab design and the resultant reinforcement must be coordinated with the point load application.
- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- A static verification is to be provided for the adjacent reinforced concrete structural component on both sides of the Schöck Isokorb[®].
- The tight fit between the thrust bearings and the concrete must be ensured, therefore lift joints must be arranged underneath the thrust bearings. With construction joints (BS EN 1992-1-1/NA) between precast concrete members and the Schöck Isokorb[®] an on-site concreting or grouting strips ≥ 100 mm is carried out.
- > The fire protection board of the Schöck Isokorb® may not be penetrated by nails or screws.

Schöck Isokorb® T for reinforced concrete structures

Some connection situations cannot be realised with those standard product variants presented in this Technical Information. In this case special designs can be requested from the application engineering department (for contact details see page3). This applies, for example, with additional requirements as a result of prefabricated construction (limitations due to technical manufacturing constraints or through transportation width), which can possibly be met using coupler bars. The bending of bars required for special constructions are carried out in the factory in each case on the individual steel bar. With this, it is monitored and ensured that the conditions of the general building supervisory approvals and of BS EN 1992 1-1 (EC2) and BS EN 1992-1-1/NA are observed with regard to bending of reinforcing steel.

Attention: If reinforcing steel in the Schöck Isokorb[®] is bent or bent and bent back on-site, the observation and the monitoring of the respective conditions lie outside the influence of Schöck Bauteile GmbH. Therefore, in such cases, the warranty is invalidated.

HTE-Compact®

 HTE-Compact® 20
 HTE-Compact® 30
 HTE-Compact® 30 with special stirrup

 \mathfrak{R}_{+}^{+} \mathfrak{R}_{+}^{+}

Summary of the application of the HTE-Compact® pressure bearing in the Schöck Isokorb® types.

HTE-Compact[®] 20

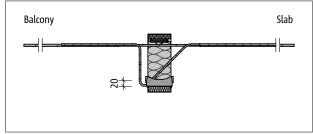


Fig. 6: Schöck Isokorb® T type K-M1 up to M4: Product section

HTE-Compact[®] 30 with special stirrup

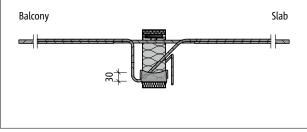


Fig. 8: Schöck Isokorb® T type K-M7 to M11: Cross section of the product

HTE-Compact[®] 30

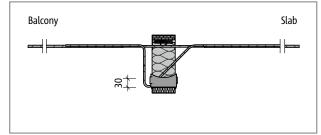


Fig. 7: Schöck Isokorb® T type K-M5 to M6: Cross section of the product

HTE-Compact[®] 20

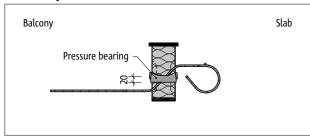
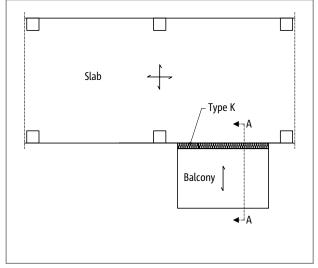



Fig. 9: Schöck Isokorb® T type Q-V1 to Q-V5: Cross section of the product

Reinforced concrete – reinforced concrete

FEM guidelines

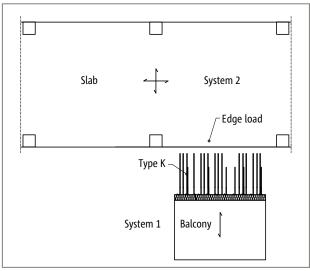


Fig. 10: Static overall system balcony and floor

Fig. 11: For the design of the floor and of the balcony the balcony slab is to be decoupled from the overall system (System 1 and 2)

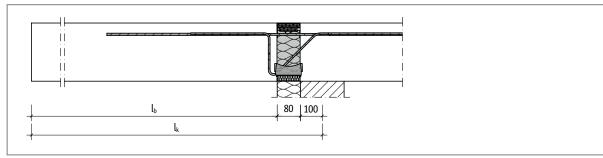


Fig. 12: Schöck Isokorb[®] type K: System cantilever length (l_k) for design and geometric cantilever length (l_b)

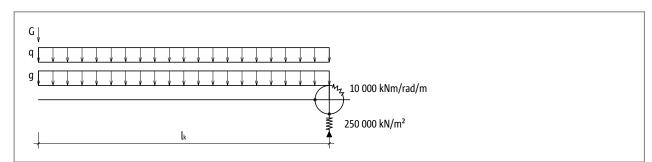


Fig. 13: Schöck Isokorb®: Approximate adoption of the spring stiffness

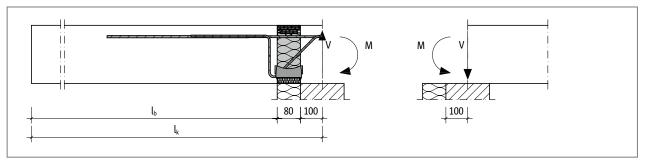


Fig. 14: Schöck Isokorb® Type K Determined design section dimensions applied to floor slab

FEM guidelines

FEM guidelines

Recommended method for the design of Schöck Isokorb® types by means of FEM systems:

- Separate balcony slab from the supporting structure of the building
- Determine internal forces on the balcony slab support taking into account the spring stiffness values (satisfactorily accurate approximation of the Schöck Isokorb® load-bearing behaviour)
 10,000 kNm/rad/m (rotation)
 250,000 kN/m² (vertical)
- Select Schöck Isokorb[®] type and add the calculated values v_{ed} and m_{ed} as external edge loads to the load-bearing structure of the building.

The stiffnesses in the area of the support of the load-bearing structure (inner slab/wall) are, in the normal case, assumed to be infinitely stiff. Only with very different stiffness relationships of connecting and supporting structural components are the linearly changing moments and shear forces along the edges of the slab to be taken into account.

The achievable internal forces are used for both the design of the Schöck Isokorb[®] as well as for the design of the inner slab and wall construction of the building.

FEM guidelines

The Schöck Isokorb[®] can transmit no twisting moments.

Fatigue/Temperature effect

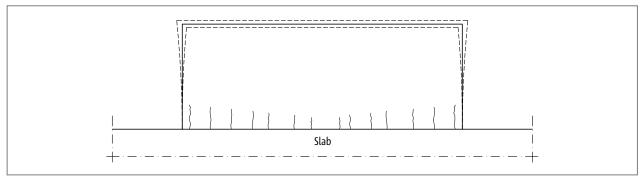


Fig. 15: Balcony slab without Schöck Isokorb®: Crack formation through fatigue possible

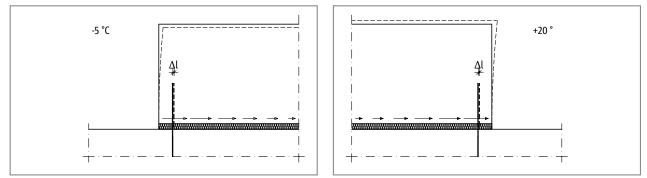


Fig. 16: Schöck Isokorb[®]: Displacement of the outer bars of a balcony slab by Δl as a result of temperature deformation

Balcony slabs, passageway walks and canopy constructions expand with warming and contract with cooling. With a continuous reinforced concrete slab cracks in the reinforced concrete slab can result at this point through which moisture can penetrate. The Schöck Isokorb[®] defines a joint which with correct execution prevents cracks in the concrete.

The tension bars, the shear force bars and the HTE-Compact[®] pressure bearings in the Schöck Isokorb[®] are consistently deflected transverse to their axis through thermal stressing. Therefore a verification of the fatigue safety is to be carried out for the Schöck Isokorb[®]. This verification of the fatigue safety is provided through the observation of the respective expansion joint spacings 'e' for the Schöck Isokorb[®] type (as per approval document). Thus material fatigue and the failure of the structural component over the planned useful life is excluded.

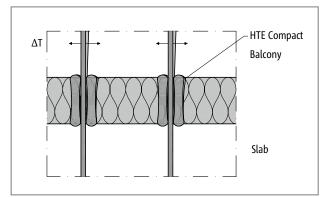
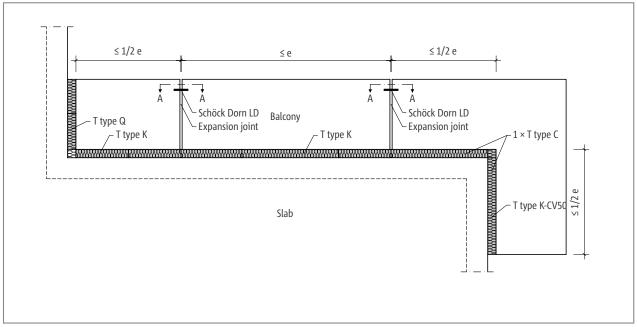



Fig. 17: Schöck Isokorb® detail: deflection of the pressure bearing as a result of temperature difference

The HTE-Compact[®] pressure bearing compensates the movement of the structural component through individual inclination of each individual compression element. The bars are deflected only in the fatigue safe area.

Fatigue | Expansion joint spacing

Fig. 18: Schöck Isokorb® T type K: Expansion joint formation with longitudinally displaceable shear force dowel, e.g. Schöck Dorn

The maximum permitted expansion joint spacings e of the Schöck Isokorb[®] types depend on the bar diameter and type of construction of the chosen Schöck Isokorb[®] types. For the respective Schöck Isokorb[®] type, the maximum expansion joint spacings are provided in the Product chapter.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

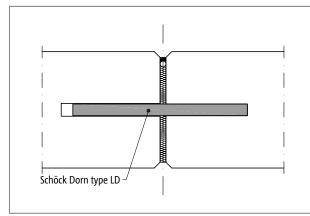


Fig. 19: Schöck Dorn: Expansion joint formation in in-situ concrete

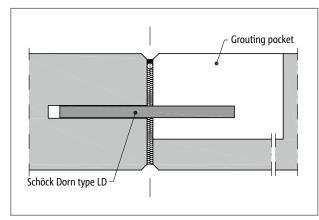


Fig. 20: Schöck Dorn: Expansion joint formation precast concrete balcony

Expansion joints

> Details for the formation of expansion joints see also: Technical Information Schöck Dorn application examples.

Indicative minimum concrete strength classes

In addition, the indicative minimum concrete strength classes of exposure classes XF1, and XF3 are to be noted. The higher minimum concrete strength class is relevant.

In addition, the indicative minimum concrete strength classes of exposure classes XF1, and XF3 are to be noted.

Indicative minimum concrete strength classes (extract from BS EN 1992-1-1 Table 4.1 and BS 8500-1:2006)

Exposure class	Indicative	Indicative minimum concrete strength classes			
BS EN 1992-1-1 Table 4.1	BS 8500-1:2006	Approval internal component	Approval external component	Schöck Isokorb®	
XC1	C20/25			30	
XC3/4	C40/50	-		35 (Δc = 5 mm)	
XC3/4	C30/37	C25/20	(22/40	50	
XD1	C35/40	C25/30	C32/40	50	
XS1	C45/55			50 (Δc = 5 mm)	
XF1, XF3	acc. to BS EN 206-1	-		-	

Concrete cover

Due to suitable quality measures with the Schöck Isokorb[®] manufacture, Δc_{dev} (BS EN 1992-1-1/NA, NDP to 4.4.1.3(3)) may be reduced by 5 mm with the determination of the concrete cover CV.

- T types K, C, K-U, K-O: CV30, CV35 and CV50 is the concrete cover of the tension bars.
- T type D: CV30 and CV35 is the concrete cover of the above lying tension bars. The lower tension bars in both cases have 30mm concrete cover.
 - CV50 is the concrete cover of the upper and lower tension bars.
- T types Q, Q-VV, Q-Z: Concrete cover balcony side under at least 30 mm (as a rule less exposed than the balcony surface).
- T types Q-P, Q-P-VV and Q-PZ: Concrete cover balcony side under at least 40 mm (as a rule less exposed than the balcony surface).
- With special requirements on the concrete cover further product variants can be requested from Schöck Technical Design Department.

Construction materials

Schöck Isokorb® construction materials

Reinforcing steel	BS4449
Structural steel	S 235 JRG1, S 235 JO, S 235 J2, S 355 JR, S 355 J2, or S 355 JO according to BS EN 10025-2 for the pressure slabs
Stainless steel	Ribbed round steel B500B NR, Material No. 1.4571 or 1.4482 according to Approval document Z-15.7-240 Tension bars Material No. 1.4482 f _{yk} = 600 N/mm ²) Plain steel bars, Material No. 1.4571 or 1.4404 of hardening level S 460
Concrete pressure bearings	HTE-Compact® pressure bearings (pressure bearings made from micro-steel fibre-reinforced high performance fine concrete) HDPE plastic sheathing
Insulating material	Neopor [®] - this polystyrene hard foam is a registered trademark of BASF, λ = 0.031 W/(m·K), build- ing material classification B1 (flame retardant)
Fire protection material	Light building panels of building material class A1, cement-bonded fire protection panels, mineral wool: $\rho \ge 150 \text{ kg/m}^3$, melting point T $\ge 1000 \text{ °C}$ and integrated fire protection tape
Connected components	
Reinforcing steel	B500A, B500B or B500C acc.to BS 4449 or BS 4483
Concrete	Standard concrete as per BS EN 206-1 with a dry apparent density of 2000 kg/m³ to 2600 kg/m³ (lightweight concrete is not permitted)
	Indicative minimum concrete strength class of the exterior structural elements: Minimum C32/40 and depending on the environmental classes according to EC2 and NA
	Indicative concrete class of the interior structural components: Minimum C25/30 and depending on the environmental classes according to EC2 and NA

Information on the bending of reinforcing steel

With the production of the Schöck Isokorb[®] in the factory it is ensured through monitoring that the conditions of the general building supervisory approval document and of BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA with regard to bending of reinforcing steel are oberved.

Attention: Attention: If reinforcing steel of the Schöck Isokorb[®] is bent or bent and bent back on-site, the observation and the monitoring of the respective conditions (European Technical Assessment (ETA, BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA) lie outside the influence of Schöck Bauteile GmbH. Therefore, in such cases, the warranty is invalidated.

Schöck Isokorb® T type K

Schöck Isokorb® T type K

Suitable for cantilever balconies. It transfers negative moments and positive shear forces. The Schöck Isokorb® type K with the secondary load-bearing level VV transmits negative moments, positive and negative shear forces.

Element arrangement | Installation cross sections

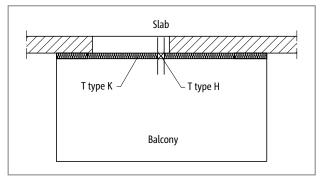
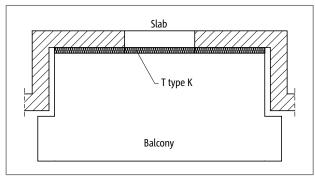


Fig. 21: Schöck Isokorb® T type K: Balcony freely cantilevered, optional with T type H (from page 125) with planned horizontal loads, e.g. closed balustrades



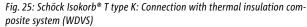


Fig. 23: Schöck Isokorb® T type K: Balcony with facade recess

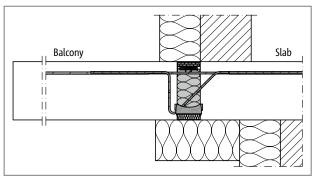


Fig. 27: Schöck Isokorb® T type K: Connection with indirectly positioned floor and WDVS

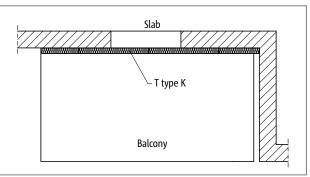


Fig. 22: Schöck Isokorb® T type K: Balcony with facade offset

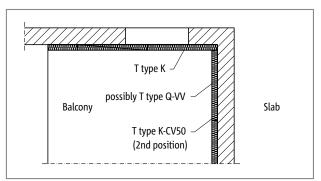


Fig. 24: Schöck Isokorb® T type K, Q-VV: Balcony with inside corner, freely supported on two sides

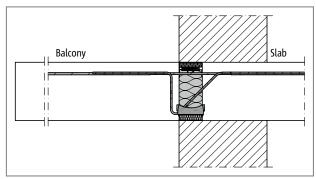


Fig. 26: Schöck Isokorb® T type K: Connection with single-leaf masonry

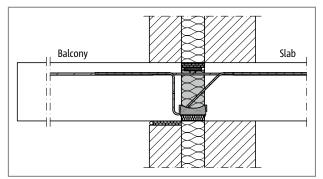
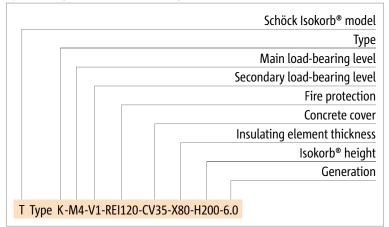


Fig. 28: Schöck Isokorb® T type K: Cavity wall with a balcony at inner slab level


Product selection | Type designations | Special designs

Schöck Isokorb® T type K variants

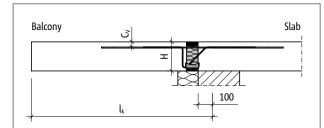
The configuration of the Schöck Isokorb[®] T type K can be varied as follows:

- Main load-bearing level:
 - M1 to M13
- Secondary load-bearing level: V1 to V3, VV1
- Fire resistance class: REI120 (standard): M1 to M11
 REI120 (Standard): M12 and M13: Projection upper fire protection board, both sides 10 mm
- Concrete cover of the tension bars:
 CV30 = 30 mm, CV35 = 35 mm, CV50 = 50 mm
- Insulating element thickness:
- X80 = 80 mm
- Isokorb® height:
 - H = 160 250 mm for concrete cover CV30, CV35
 - H = 180 250 mm for concrete cover CV50
- Generation:
 - 6.0

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).


In accordance with approval heights up to 500 mm are possible.

This also applies with additional requirements as a result of precast concrete construction. For additional requirements determined by manufacturing or transportation there are solutions available with coupler bars.

Design

🚺 Notes on design

- Minimum height H_{min} Schöck Isokorb[®] T type K-M1 to M11 for CV50: H_{min}=180mm, T type K-M12 and K-M13 see page33.
- ▶ For cantilever slab structures Schöck Isokorb® T type K-M1 to K-M11 without live load, stressed from moment loading without direct shear force activity or light structures, please use Schöck design software or contact our application engineering dept.

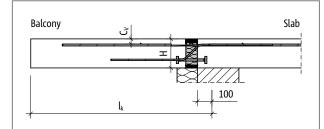


Fig. 29: Schöck Isokorb® T type K: Static system

Fig. 30: Schöck Isokorb® T type K-M12: Static system

C25/30 design

Schöck Is	sokorb® ⁻	T type K:		M1	M2	M3	M4	M5	M6
Design values with	Concrete cover CV [mm]			Concrete strength class ≥ C25/30					
WICH	CV30	CV35	CV50						
	-	160	-	-8.0	-15.7	-20.5	-23.8	-26.1	-28.7
Isokorb® height H [mm]	160	-	180	-8.5	-16.6	-21.7	-25.2	-27.7	-30.4
	-	170	-	-8.9	-17.5	-23.0	-26.5	-29.3	-32.3
	170	-	190	-9.4	-18.4	-24.2	-27.9	-30.8	-34.0
	-	180	-	-9.9	-19.3	-25.5	-29.2	-32.4	-35.9
	180	-	200	-10.3	-20.2	-26.7	-30.6	-34.0	-37.7
	-	190	-	-10.8	-21.1	-27.9	-31.9	-35.6	-39.6
	190	-	210	-11.3	-22.0	-29.1	-33.3	-37.1	-41.4
	-	200	-	-11.8	-23.0	-30.3	-34.6	-38.7	-43.2
	200	-	220	-12.2	-23.9	-31.5	-36.0	-40.3	-45.1
	-	210	-	-12.7	-24.8	-32.7	-37.3	-41.9	-47.0
	210	-	230	-13.2	-25.7	-33.8	-38.7	-43.4	-48.8
	-	220	-	-13.7	-26.6	-35.0	-40.0	-45.0	-50.7
	220	-	240	-14.2	-27.5	-36.2	-41.4	-46.6	-52.6
	-	230	-	-14.7	-28.5	-37.4	-42.7	-48.2	-54.5
	230	-	250	-15.1	-29.4	-38.6	-44.1	-49.7	-56.4
	-	240	-	-15.6	-30.3	-39.8	-45.4	-51.3	-58.3
	240	-	-	-16.1	-31.2	-40.9	-46.8	-52.9	-60.2
	-	250	-	-16.6	-32.2	-42.1	-48.1	-54.4	-62.2
	250	-	-	-17.1	-33.1	-43.3	-49.5	-56.0	-64.0
						V _{Rd,z} [kN/m]		
	V1			34.8	34.8	43.5	43.5	43.5	43.5
	V2			61.8	61.8	77.3	77.3	77.3	77.3
	V3			-	-	123.6	123.6	123.6	123.6
	VV1			-	-	-	±61.8	±61.8	±61.8

Schöck Isokorb® T type K:	M1	M2	M3	M4	M5	M6
Isokorb® length [mm]	1000	1000	1000	1000	1000	1000
Tension bars V1/V2/V3	4 Ø 8	8 Ø 8	10 Ø 8	12 Ø 8	14 Ø 8	15 Ø 8
Tension bars VV1	-	-	-	14 Ø 8	15 Ø 8	8 Ø 12
Shear force bars V1	4 Ø 6	4ø6	5Ø6	5Ø6	5Ø6	5Ø6
Shear force bars V2	4 Ø 8	4 Ø 8	5ø8	5ø8	5ø8	5ø8
Shear force bars V3	-	-	8Ø8	8 Ø 8	8 Ø 8	8Ø8
Shear force bars VV1	-	-	-	4ø8+4ø8	4ø8+4ø8	4ø8+4ø8
Pressure bearing V1/V2 (piece)	4	6	7	8	7	8
Pressure bearing V3 (piece)	-	-	8	8	8	10
Pressure bearing VV1 (piece)	-	-	-	11	12	13

- Notes on design
 Static system and infomation on the design see page 30.
- Schöck Isokorb® T type K-M6-V3 tension bars: 7912
- Schöck Isokorb[®] T type K-M6-VV1 special stirrup: 4 piece.

C25/30 design

Schöck I	sokorb® ⁻	Г type К:		M7	M8	M9	M10	M11	M11
Design values with	Concrete cover CV [mm]				Concrete strength class ≥ C25/30				
WICH	CV30	CV35	CV50						
	-	160	-	-32.5	-36.4	-40.4	-46.4	-46.4	-50.2
	160	-	180	-34.5	-38.7	-43.0	-49.2	-49.2	-53.3
	-	170	-	-36.7	-41.1	-45.6	-52.1	-52.1	-56.4
	170	-	190	-38.7	-43.4	-48.1	-55.0	-55.0	-59.4
	-	180	-	-40.9	-45.8	-50.8	-57.8	-57.8	-62.5
	180	-	200	-42.9	-48.1	-53.3	-60.7	-60.7	-65.6
	-	190	-	-45.1	-50.6	-56.0	-63.5	-63.5	-68.7
	190	-	210	-47.2	-52.9	-58.6	-66.4	-66.4	-71.8
	-	200	-	-49.4	-55.3	-61.3	-69.3	-69.3	-74.9
Isokorb® height	200	-	220	-51.5	-57.7	-63.9	-72.1	-72.1	-78.0
H [mm]	-	210	-	-53.7	-60.1	-66.6	-75.0	-75.0	-81.1
	210	-	230	-55.8	-62.5	-69.2	-77.9	-77.9	-84.2
	-	220	-	-58.0	-65.0	-71.8	-80.7	-80.7	-87.3
	220	-	240	-60.1	-67.4	-74.3	-83.6	-83.6	-90.4
	-	230	-	-62.4	-69.9	-76.8	-86.4	-86.4	-96.5
	230	-	250	-64.5	-72.3	-79.4	-89.3	-89.3	-96.6
	-	240	-	-66.8	-74.7	-81.9	-92.2	-92.2	-99.7
	240	-	-	-68.9	-77.1	-84.5	-95.0	-95.0	-102.8
	-	250	-	-71.2	-79.4	-87.0	-97.9	-97.9	-105.9
	250	-	-	-73.4	-81.7	-89.6	-100.7	-100.7	-109.0
						V _{Rd,z} [k	(N/m]		
	V1			92.7	108.2	108.2	123.6	139.1	139.1
	V2			123.6	123.6	123.6	139.1	-	-
	VV1			108.2/-61.8	108.2/-61.8	108.2/-61.8	123.6/-61.8	123.6/-61.8	123.6/-61.8

Schöck Isokorb® T type K:	M7	M8	M9	M10	M11	M11
Isokorb® length [mm]	1000	1000	1000	1000	1000	1000
Tension bars V1/V2	8 Ø 12	9 Ø 12	10 Ø 12	12 Ø 12	13 Ø 12	13 Ø 12
Tension bars VV1	9 Ø 12	10 Ø 12	11 Ø 12	12 Ø 12	13 Ø 12	13 Ø 12
Shear force bars V1	6 Ø 8	7Ø8	7Ø8	8 Ø 8	9ø8	9 Ø 8
Shear force bars V2	8 Ø 8	8 Ø 8	8 Ø 8	9 Ø 8	-	-
Shear force bars VV1	7Ø8+4Ø8	7ø8+4ø8	7ø8+4ø8	8Ø8+4Ø8	8Ø8+4Ø8	8Ø8+4Ø8
Pressure bearing V1/V2 (piece)	11	12	16	18	18	18
Pressure bearing VV1 (piece)	16	17	16	18	18	18
Special stirrup (piece)	4	4	4	4	4	4

Notes on design

- Static system and infomation on the design see page 30.
- The indicative minimum concrete strength class of the external structural component is C32/40.
- ▶ With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- Note FEM guidelines if a FEM program is to be used for design.

T type K

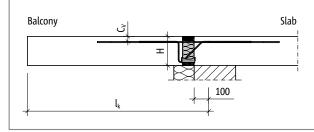
C25/30 design

Schöck I	lsokorb® `	T type K:		M12	M13		
Design values with				Concrete strength class ≥ C25/30			
with	CV30	CV35	CV50	m _{Rd,y} [k	Nm/m]		
	-	180	-	-59.8	-86.5		
	180	-	200	-63.5	-90.9		
	-	190	-	-67.1	-95.2		
	190	-	210	-70.7	-99.5		
	-	200	-	-74.3	-103.8		
	200	-	220	-77.9	-108.2		
	-	210	-	-81.5	-112.5		
lsokorb® height	210	-	230	-85.1	-116.8		
H [mm]	-	220	-	-88.7	-121.1		
	220	-	240	-92.3	-125.5		
	-	230	-	-95.9	-129.8		
	230	-	250	-99.5	-134.1		
	-	240	-	-103.1	-138.4		
	240	-	-	-106.7	-142.8		
	-	250	-	-110.3	-147.1		
	250	-	-	-113.9	-151.4		
				v _{Rd,z} [ł	«N/m]		
	V1			96.6	96.6		
	V2			144.9	144.9		
	V3			208.6	208.6		

Schöck Isokorb® T type K:	M12	M13
Isokorb® length [mm]	1000	1000
Tension bars	12 Ø 14	14 Ø 14
Pressure bearing / compression bars	10 Ø 16	12 Ø 16
Shear force bars V1	4 Ø 10	4 Ø 10
Shear force bars V2	6 Ø 10	6 Ø 10
Shear force bars V3	6 Ø 12	6 Ø 12
H _{min} for V3 CV30/35 [mm]	190	190
H _{min} for V1/V2 CV50 [mm]	200	200
H _{min} for V3 CV50 [mm]	210	210

Notes on design

- Static system and infomation on the design see page 30.
- The indicative minimum concrete strength class of the external structural component is C32/40.
- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- Note FEM guidelines if a FEM program is to be used for design.


Deflection/Camber

Deflection

The deflection factors given in the table (tan α [%]) result alone from the deflection of the Schöck Isokorb[®] under 100% steel utilisation. They serve for the estimation of the required camber. The total arithmetic camber of the balcony slab formwork results from the calculation according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA plus the deflection from Schöck Isokorb[®]. The camber of the balcony slab formwork to be given by the structural engineer/designer in the implementation plans (Basis: Calculated total deflection from cantilever slab + floor rotation angle + Schöck Isokorb[®]) should be so rounded that the scheduled drainage direction is maintained (round up: with drainage to the building facade, round down: with drainage towards the cantilever slab end).

Deflection (p) as a result of Schöck Isokorb®

Deflection (p) as a result of	I JUIUUK ISUK	
	р	= tan $\alpha \cdot l_k \cdot (m_{pd} / m_{Rd}) \cdot 10 [mm]$
Factors to be applied		
	tan α	= apply value from table
	l _k	= cantilever length [m]
	m _{pd}	= relevant bending moment [kNm/m] in the ultimate limit state for the determination
		of the p [mm] from Schöck Isokorb [®] .
		The load combination to be applied for the deflection is determined by the structural engineer.
		(Recommendation: Load combination for the determination of the camber p : determine g+q/2, m _{pd} in the ultimate limit state)
	m _{Rd}	= maximum design moment [kNm/m] of the Schöck Isokorb®

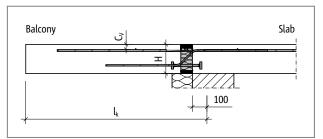


Fig. 31: Schöck Isokorb® T type K: Static system

Fig. 32: Schöck Isokorb® T type K-M12: Static system

Schöck Isokorb® T type K:		1	M1-M5, M6-V1/V2		M6-V3/VV1, M7-M11			
Deflection factors when			tan α [%]		tan α [%]			
Deflection	actors when	CV30	CV35	CV50	CV30	CV35	CV50	
	160	0.9	0.9	-	1.2	1.2	-	
	170	0.8	0.8	-	1.0	1.0	-	
	180	0.8	0.8	0.9	0.9	0.9	1.1	
	190	0.7	0.7	0.8	0.9	0.9	1.0	
lsokorb®	200	0.6	0.6	0.7	0.8	0.8	0.9	
height H [mm]	210	0.6	0.6	0.7	0.7	0.7	0.8	
r1	220	0.6	0.6	0.6	0.7	0.7	0.8	
	230	0.5	0.5	0.6	0.6	0.6	0.7	
	240	0.5	0.5	0.5	0.6	0.6	0.7	
	250	0.5	0.5	0.5	0.6	0.6	0.6	

vpe K

Schöck Isokorb® T type K:		M12			M13		
Deflection factors when		tan α [%]			tan α [%]		
		CV30	CV35	CV50	CV30	CV35	CV50
lsokorb® height H [mm]	180	0.8	0.8	-	1.2	1.2	-
	190	0.7	0.7	-	1.1	1.1	-
	200	0.7	0.7	0.8	1.0	1.0	1.2
	210	0.6	0.6	0.7	0.9	0.9	1.1
	220	0.6	0.6	0.7	0.9	0.9	1.0
	230	0.5	0.5	0.6	0.8	0.8	0.9
	240	0.5	0.5	0.6	0.8	0.8	0.9
	250	0.5	0.5	0.5	0.7	0.7	0.8

Deflection/Camber | Slenderness

Slenderness

In order to safeguard the serviceability limit state we recommend the limitation of the slenderness to the following maximum cantilever lengths max l_k [m]:

Schöck Isokorb® T type K:		M1-M13					
maximum cantilever length with		l _{k,max} [m]					
		CV30	CV35	CV50			
lsokorb® height H [mm]	160	1.81	1.74	-			
	170	1.95	1.88	-			
	180	2.10	2.03	1.81			
	190	2.25	2.17	1.95			
	200	2.39	2.32	2.10			
	210	2.54	2.46	2.25			
	220	2.68	2.61	2.39			
	230	2.83	2.76	2.54			
	240	2.98	2.90	2.68			
	250	3.12	3.05	2.83			

Maximum cantilever length

The tabular values are based on the following assumptions:

- Accessible balcony
- Specific weight of concrete γ=25 kN/m³
- **b** Dead weight of the balcony surfacing $g_2 \le 1.2 \text{ kN/m}^2$
- Balcony rail $g_{R} \leq 0.75 \text{ kN/m}$

Maximum cantilever length

The maximum cantilevered length for ensuring the serviceability is a benchmark. It can be limited by the load bearing capacity when using the Schöck Isokorb[®] T type K.

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component exceeds the maximum expansion joint spacing e, then expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. For fixed points such as corners of balconies, parapets and balustrades or when using the Schöck Isokorb[®] T type H, half the maximum expansion joint spacing e/2 applies out from the fixed point.

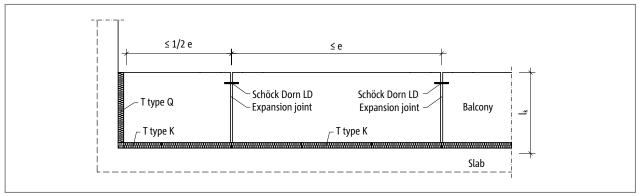


Fig. 33: Schöck Isokorb® T type K: Expansion joint layout

Schöck Isokorb® T type K:		M1 - M6-V1,V2	M6-V3 - M11
Maximum expansion joint spacir	ng	e [m]	
Insulating element thickness [mm]	80	13.5	13.0

Schöck Isokorb® T type K:		M12, M13
Maximum expansion joint spacing	je	e [m]
Insulating element thickness [mm]	80	9.2

Edge distances

- The Schöck Isokorb[®] must be so arranged at the expansion joint that the following conditions are met:
- For the centre distance of the tension bars from the free edge or from the expansion joint: $e_R \ge 50$ mm and $e_R \le 150$ mm applies.
- For the centre distance of the compression elements from the free edge or from the expansion joint: $e_R \ge 50$ mm applies.
- For the centre distance of the shear force bars from the free edge or from the expansion joint: $e_R \ge 100$ mm and $e_R \le 150$ mm applies.

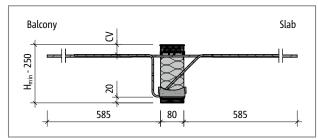


Fig. 34: Schöck Isokorb® T type K-M1 to M4: Product section

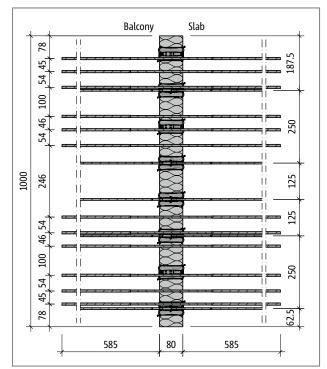


Fig. 36: Schöck Isokorb® T type K-M4-V1: Product layout

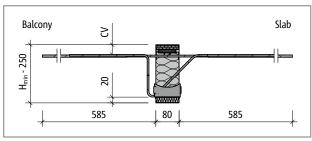


Fig. 35: Schöck Isokorb® T type K-M5 and K-M6: Product section

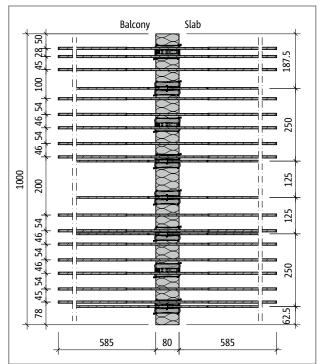


Fig. 37: Schöck Isokorb® T type K-M6-V1: Product layout

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Minimum height Schöck Isokorb[®] T type K with CV50: H_{min} = 180 mm
- On-site spacing of the Schöck Isokorb® T type K on the unreinforced positions possible; take into account the load-bearing capacity reduced due to the spacing; take into account required edge distances
- Concrete cover of the tension bars: CV30 = 30 mm, CV35 = 35 mm, CV50 = 50 mm
- Schöck Isokorb[®] T type K-M6-V3/VV1: Tension bar length L= 725 mm

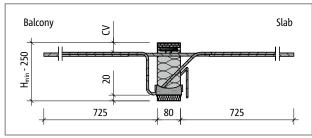


Fig. 38: Schöck Isokorb® T type K-M7 to M11: Product section

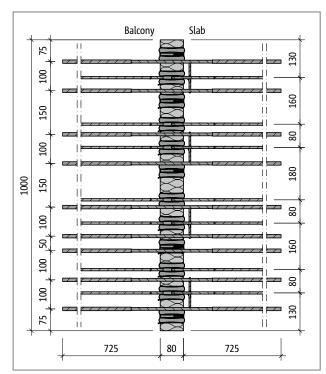


Fig. 40: Schöck Isokorb® T type K-M8-V1: Product layout

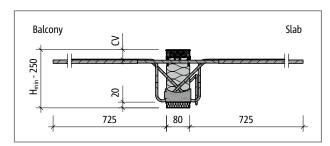


Fig. 39: Schöck Isokorb® T type K-M6-VV1: Product section

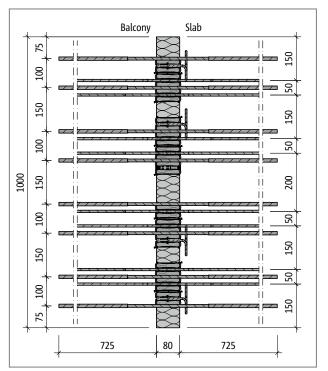


Fig. 41: Schöck Isokorb® T type K-M6-VV1: Product layout

Product information

- > Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Minimum height Schöck Isokorb® T type K with CV50: H_{min} = 180 mm
- On-site spacing of the Schöck Isokorb® T type K on the unreinforced positions possible; take into account the load-bearing capacity reduced due to the spacing; take into account required edge distances
- Concrete cover of the tension bars: CV30 = 30 mm, CV35 = 35 mm, CV50 = 50 mm

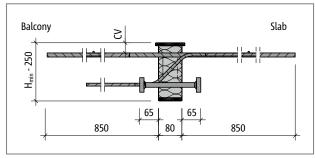


Fig. 42: Schöck Isokorb® T type K-M12: Product section

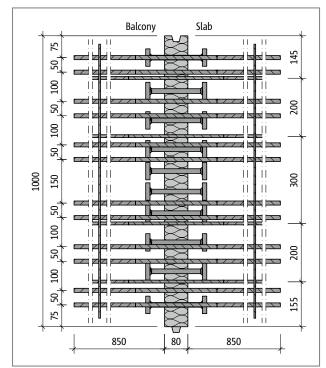


Fig. 44: Schöck Isokorb® T type K-M12-V1: Product layout

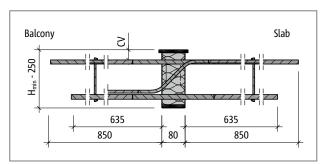


Fig. 43: Schöck Isokorb® T type K-M13: Product section

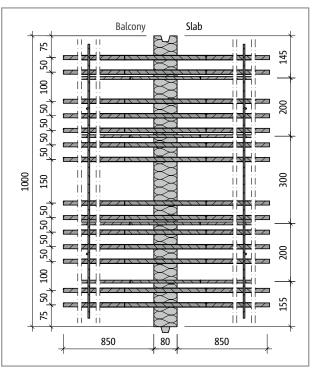
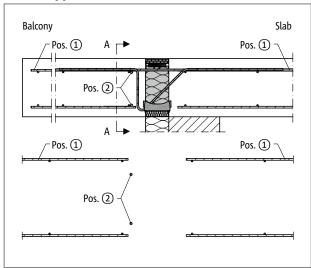



Fig. 45: Schöck Isokorb[®] T type K-M13-V1: Product layout

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Minimum height H_{min} Schöck Isokorb[®] T type K-M12 and T type K-M13 see page 33
- On-site spacing of the Schöck Isokorb® T type K on the unreinforced positions possible; take into account the load-bearing capacity reduced due to the spacing; take into account required edge distances
- Concrete cover of the tension bars: CV30 = 30 mm, CV35 = 35 mm, CV50 = 50 mm

Direct support

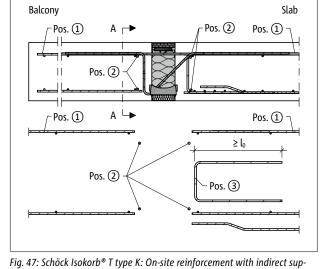
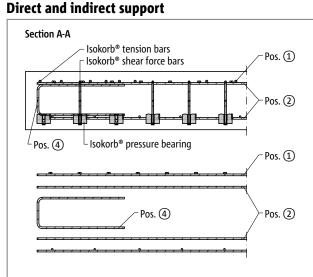
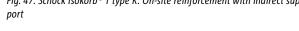



Fig. 46: Schöck Isokorb® T type K: On-site reinfircement with direct support


Information on side reinforcement

- The side reinforcement of the slab edge parallel to the Schöck Isokorb[®] is covered on-site by the integrated suspension reinforcement of the Schöck Isokorb®.

Indirect support

Fig. 48: Schöck Isokorb® T type K: On-site reinforcement on the balcony side in the Section A-A; Pos.4 = side reinforcement on the free edge perpendicular to the Schöck Isokorb®

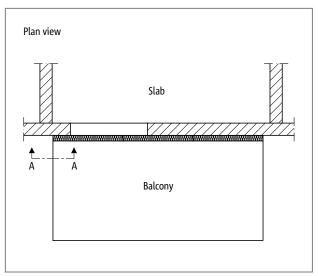


Fig. 49: Schöck Isokorb® T type K: Diagram of the position of Section A-A

Recommendation for on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; variants adapted to load-bearing level. The required reinforcement cross-section depends on the bar diameter of the steel bar or wire mesh reinforcement.

Schöck Isok	orb® T type K:		N	11	N	12	M3		M4				
a "	Secondary load-bearing level		V1	V2	V1	V2	V1	V2	V3	V1	V2	V3	VV1
On-site reinforcement	Type of bearing	Height [mm]	Concrete strength class ≥ C25/30										
Pos. 1 overlap reinforce	ement depending	g on bar di	ameter										
Pos. 1 with Ø8 [mm²/m]			242	215	443	416	578	544	564	655	622	622	704
Pos. 1 with Ø10 [mm²/m]	direct/indirect	160 - 250	271	252	476	457	619	596	641	698	675	699	717
Pos. 1 with Ø12 [mm²/m]			325	302	571	548	743	715	769	838	810	839	861
Pos. 2 Steel bars along	the insulation jo	int					` 					` 	
Dec. 2	direct	160 - 250						2 • H8					
Pos. 2	indirect	160 - 250						4 • H8					
Pos. 3 vertical reinforce	ement												
Pos. 3 [mm²/m]	indirect	160 - 250	11	13	1	13		113			113		-
Pos. 4 supplementary e	Pos. 4 supplementary edge reinforcement												
Pos. 4	direct/indirect	160 - 250				accordin	g to BS E	EN 1992-	1-1 (EC2), 9.3.1.4			

Schöck Isok	orb® T type K:		M5			M6				M7			
o 'i	Secondary load-bearing level		V1	V2	V3	VV1	V1	V2	V3	VV1	V1	V2	VV1
On-site reinforcement	Type of bearing	Height [mm]		Concrete strength class ≥ C25/30									
Pos. 1 overlap reinforce	ement depending	g on bar di	ameter										
Pos. 1 with Ø8 [mm²/m]			757	724	775	754	861	827	844	880	959	959	990
Pos. 1 with Ø10 [mm²/m]	direct/indirect	160 - 250	802	779	856	768	908	884	915	880	1012	1030	990
Pos. 1 with Ø12 [mm²/m]			963	934	1027	922	1089	1061	986	880	1065	1101	990
Pos. 2 Steel bars along	the insulation jo	int											
Dec 2	direct	160 - 250						2 • H8					
Pos. 2	indirect	160 - 250						4 • H8					
Pos. 3 vertical reinforce	ement												
Pos. 3 [mm²/m]	indirect	160 - 250	1	13	120	-	12	25	130	-	1	13	-
Pos. 4 supplementary e	Pos. 4 supplementary edge reinforcement												
Pos. 4	direct/indirect	160 - 250	according to BS EN 1992-1-1 (EC2), 9.3.1.4										

Information about on-site reinforcement

- Alternative reinforcements are possible. Determine lap length according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA.A reduction of the required lap length using m_{Ed}/m_{Rd} is permitted.For overlapping (l_o) with the Schöck Isokorb[®], with T types K-M1 to K-M6-V2 a length of the tension bars of 545 mm and with T types K-M6-V3 to K-M11 a length of the tension bars of 675 mm can be input in the calculation.
- When reinforcing with different diameters the reinforcement specification for the largest diameter is relevant.
- The mixing of steel bar and wire mesh reinforcement is possible. The corresponding mesh reinforcement can be taken into account when determining the additional reinforcement.
- The reinforcement at the free edges Pos. 4 of the structural component perpendicular to the Schöck Isokorb[®] should be selected as low as possible so that it can be arranged between the upper and lower reinforcement layer.
- The indicative minimum concrete strength class of the external structural component is C32/40.

ype |

Recommendation for on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; variants adapted to load-bearing level. The required reinforcement cross-section depends on the bar diameter of the steel bar or wire mesh reinforcement.

Schöck Isok	orb® T type K		M8			M9		M10			M11		
On-site	Secondary load-bearing level		V1	V2	VV1	V1	V2	VV1	V1	V2	VV1	V1	VV1
reinforcement	Type of bearing	Height [mm]		Concrete strength class ≥ C25/30									
Pos. 1 overlap reinforce	Pos. 1 overlap reinforcement depending on bar diameter												
Pos. 1 with Ø10 [mm²/m]	direct/indirect	160 250	1130	1139	1100	1232	1241	1170	1388	1396	1317	1504	1424
Pos. 1 with Ø12 [mm²/m]	airect/indirect	100 - 250	1192	1210	1100	1295	1312	1170	1459	1476	1317	1584	1424
Pos. 2 Steel bars along	Pos. 2 Steel bars along the insulation joint												
Pos. 2	direct	160 - 250	2 • H8										
PUS. 2	indirect	160 - 250						4 • H8					
Pos. 3 vertical reinforce	ment												
Pos. 3 [mm²/m]	indirect	160 - 250	11	13	-	1	13	-	11	13	-	113	-
Pos. 4 supplementary e	dge reinforceme	ent											
Pos. 4	direct/indirect	160 - 250	D according to BS EN 1992-1-1 (EC2), 9.3.1.4										

Information about on-site reinforcement

- Alternative reinforcements are possible. Determine lap length according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA.A reduction of the required lap length using m_{Ed}/m_{Rd} is permitted.For overlapping (l₀) with the Schöck Isokorb[®], with T types K-M1 to K-M6-V2 a length of the tension bars of 545 mm and with T types K-M6-V3 to K-M11 a length of the tension bars of 675 mm can be input in the calculation.
- > When reinforcing with different diameters the reinforcement specification for the largest diameter is relevant.
- The mixing of steel bar and wire mesh reinforcement is possible. The corresponding mesh reinforcement can be taken into account when determining the additional reinforcement.
- ▶ The reinforcement at the free edges Pos. 4 of the structural component perpendicular to the Schöck Isokorb[®] should be selected as low as possible so that it can be arranged between the upper and lower reinforcement layer.
- The indicative minimum concrete strength class of the external structural component is C32/40.

Direct support

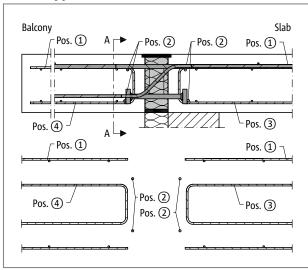


Fig. 50: Schöck Isokorb® T type K-M12: On-site reinforcement with direct support

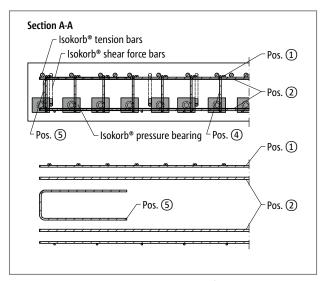


Fig. 52: Schöck Isokorb® T type K-M12: On-site reinforcment on the balcony side in the Section A-A; Pos.5 = structural edging at the free edge perpendicular to the Schöck Isokorb®

Indirect support

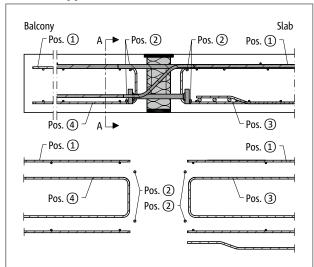


Fig. 51: Schöck Isokorb® T type K-M12: On-site reinforcement with indirect support

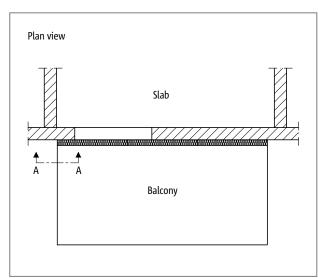


Fig. 53: Schöck Isokorb® T type K: Diagram of the position of Section A-A

Schöck I	sokorb® T type K:		M12-V1	M12-V2	M12-V3	M13V1	M13-V2	M13-V3	
On-site reinforcement	Type of bearing	Height [mm]	Concrete strength class ≥ C25/30						
Pos. 1 Lapping reinf	orcement								
Pos. 1 [mm²/m]	direct/indirect	180 - 250		1848 2156					
Pos. 1 Variant	direct/indirect	180 - 250		H16@80 mm			H16@70 mm		
Pos. 2 Steel bars alo	ng the insulation	joint							
Dec 2	direct	180 - 250	2 • H8			2 • H8			
Pos. 2	indirect	180 - 250	2 • H8				2 • H8		
Pos. 3 Edge- and spl	itting tension rein	forcement							
Dec. 2 [direct	180 - 250		-		-	-	-	
Pos. 3 [mm²/m]	indirect	180 - 250		226		113			
Pos. 4 Edge and spli	tting tension reinf	orcement							
Dec. 4 [direct	180 - 250	440		700			400	
Pos. 4 [mm²/m]	indirect	180 - 250	448	559	706	222	333	480	
Pos. 5 Side reinforce	ement at the free e	edge				·		` 	
Pos. 5	direct/indirect	180 - 250	according to BS EN 1992-1-1 (EC2), 9.3.1.4						

Information about on-site reinforcement

- Alternative reinforcements are possible. Determine lap length according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA. A reduction of the required lap length using m_{Ed}/m_{Rd} is permitted. For overlapping (l₀) with the Schöck Isokorb[®], with T types K-M12 a length of the tension bars of 710 mm and with T types K-M13 a length of the tension bars of 730 mm can be in put in the calculation.
- The side reinforcement Pos. 5 should be selected so low that it can be arranged between the upper and lower reinforcement position.
- The indicative minimum concrete strength class of the external structural component is C32/40.

Tight fit/Concreting section | Precast/Compression joints

Tight fit/Concreting section

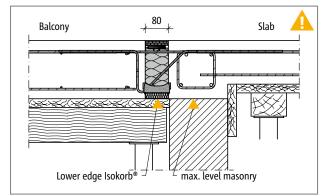
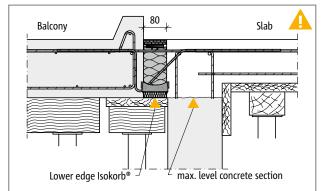
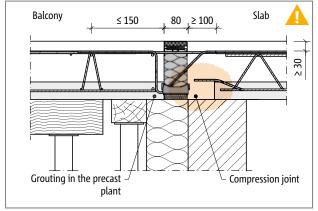


Fig. 54: Schöck Isokorb[®] T type K: In situ concrete with height offset floor on masonry wall




Fig. 55: Schöck Isokorb® T type K: Fully-finished balcony with height offset floor on fully-finished reinforced concrete wall

\rm Hazard note: Tight fit with different height levels

The tight fit of the pressure bearings to the freshly poured concrete is to be ensured, therefore the upper edge of the masonry respectively of the concreting section is to be arranged below the lower edge of the Schöck Isokorb®. This is to be taken into account above all with a different height level between inner slab and balcony.

- The concreting joint and the upper edge of the masonry are to be arranged below the lower edge of the Schöck Isokorb[®].
- The position of the concreting section is to be indicated in the formwork and reinforcement drawing. Þ
- The joint planning is to be coordinated between precast concrete plant and construction site.

Precast/Compression joints

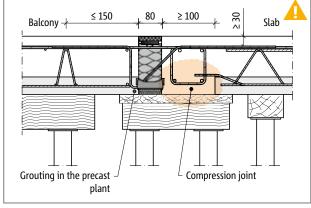
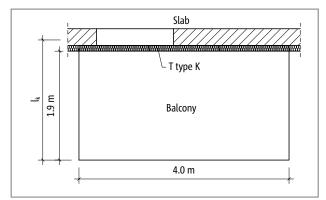


Fig. 56: Schöck Isokorb® T type K/KF: Direct support, installation in conjunction with prefabricated slabs (here: $h \le 170 \text{ mm}$), compression joint on the floor side

Fig. 57: Schöck Isokorb® T type K/KF: Indirect support, installation in conjunction with prefabricated slabs(here: $h \le 170$ mm), compression joint on the floor side


A Hazard note: Compression joints

Compression joints are joints which, with unfavourable loading combination, remain always in compression. The underside of a cantilever balcony is always a compression zone. If the cantilever balcony is a precast part or an element slab, and/or the floor is an element slab, then the definition of the standard is effective.

- Compression joints are to be indicated in the formwork and reinforcement drawing!
- Compression joints between precast parts are always to be grouted using in-situ concrete. This also applies for compression joints with the Schöck Isokorb®!
- With compression joints between precast parts (on the inner slab or balcony side) and the Schöck Isokorb® an in-situ concrete resp. pour of \geq 100 mm width is to be cast. This is to be entered in the working drawings.
- We recommend the installation of the Schöck Isokorb® and the pouring of the balcony-side compression joint already in the precast concrete plant.

Design example

Example calculation

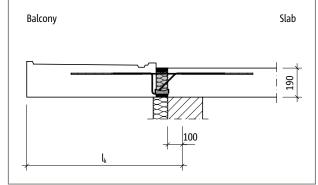


Fig. 59: Schöck Isokorb® T type K: Static system

Fig. 58: Schöck Isokorb® T type K: Plan layout

Static system and load assumptions

Geometry:	Projection length	l _k = 2.06 m
	Balcony slab thickness	h = 190 mm
Design loads:	Balcony slab and screed	g = 6.25 kN/m ²
	Service load	q = 2.5 kN/m²
	Edge load (balustrade)	g _R = 1.5 kN/m
Explosure classes:	External XC 4	
	Internal XC 1	
Selected:	Concrete strength class C25/3	0 for floor and C32/ 40 for balcony
	Concrete cover c _v = 35 mm for	Isokorb [®] tension bars
Connection geometry:	No height offset, no floor dow	nstand beam, no balcony upstand
Support floor:	Floor edge directly supported	
Support balcony:	Restraint of cantilever slab us	ing type K
Support floor:	No height offset, no floor dow Floor edge directly supported	unstand beam, no balcony upstand

Recommendation on slenderness

Geometry:	Projection length	l _k = 2.06 m		
	Balcony slab thickness	h = 190 mm		
	Concrete cover	CV35		
	Maximum projection length	$l_{k,max}$ = 2.17 m (from table, see page 35) > l_k		

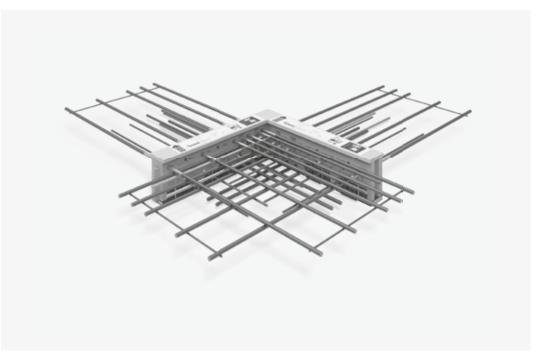
Proof of limits of load-bearing capacity (moment stress and shear force)

Internal forces:	m _{Ed} m _{Ed}	$= -[(\gamma_{G} \cdot g_{Q} + \gamma \cdot q) \cdot l_{k}^{2}/2 + \gamma_{G} \cdot g_{R} \cdot l_{k})]$ = -[(1.35 \cdot 6.25 + 1.5 \cdot 2.5) \cdot 2.06^{2}/2 + 1.35 \cdot 1.5 \cdot 2.06)] = -30.0 kNm/m
	V _{Ed}	$= + (\gamma_{G} \cdot g + \gamma_{q} \cdot q) \cdot l_{k} + \gamma_{G} \cdot g_{R}$
	V _{Ed}	= +(1.35 · 6.25 + 1.5 · 2.5) · 2.06 + 1.35 · 1.5 = +27.1 kN/m
Selected:	Schöck I	sokorb® T type K-M6-V1-REI120-CV35-X80-H190
	m _{Rd}	= -31.9 kNm/m (see page 30) > m _{Ed}
	V _{Rd}	= +43.5 kN/m (see page 30) > v_{Ed}
	$tan \alpha$	= 0.7 % (see page 34)

Design example | Installation instructions

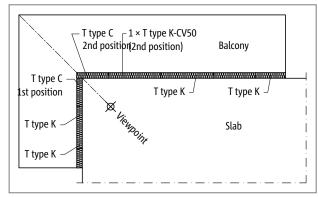
Serviceability limit state (deflection/precamber)

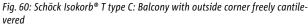
Deflection factor:	$\tan \alpha$	= 0.7 (from table, see page 34)
Selected load combination:	g + q/2	
	(Recomme	endation for the determination of the precamber from Schöck Isokorb [®])
	Determine	e $m_{\tilde{u}d}$ in the ultimate limit state
	\mathbf{m}_{pd}	$= -[(\gamma_{G} \cdot g + \gamma_{Q} \cdot q/2) \cdot l_{k}^{2}/2 + \gamma_{G} \cdot g_{R} \cdot l_{k}]$
	\mathbf{m}_{pd}	= -[(1.35 · 6.25 + 1.5 · 2.5/2) · 2.06 ² /2 + 1.35 · 1.5 · 2.06] = -26.0 kNm/m
	р	= $[\tan \alpha \cdot l_k \cdot (m_{pd} / m_{Rd})] \cdot 10 [mm]$
	р	= [0.7 · 2.06 · (26.0/31.9)] · 10 = 11.8 mm
Arrangement of expansion join	int	Length of balcony : 4.00 m < 11.30 m
	=> No exp	ansion joints required


Installation manual

▶ Installation manual see Technical Information Schöck Isokorb® XT for reinforced concrete structures.

🗹 Check list


- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- Has the additional proportionate deflection resulting from the Schöck Isokorb® been taken into account?
- □ Is the drainage direction taken into account with the resulting camber information? Is the degree of camber entered in the working drawings?
- □ Is the minimum slab thickness H_{min} for the respective Schöck Isokorb[®] type taken into account?
- Are the recommendations for the limitation of the slenderness observed?
- Are the maximum allowable expansion joint spacings taken into account?
- Are the Schöck FEM guidelines taken into account with the calculation using FEM?
- With the selection of the design table is the relevant concrete cover taken into account?
- Have existing horizontal loads e.g. from wind pressure been taken into account as planned? Are additional Schöck Isokorb® T type H required for this?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have the required in-situ concrete strips for the T type K in conjunction with inner slab elements (width \geq 100 mm from compression element), been charted in the implementation plans?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- With precast balconies are possibly necessary gaps for the front side transportation anchors and downpipes with internal drainage taken into account? Is the maximum centre distance of 300 mm for the Isokorb[®] bars observed?
- □ Is the increased minimum slab thickness (≥ 180 mm) and the required 2nd position (-CV50) been taken into account with the corner balcony? Is a T type K-CV50 (2nd position) planned in the connection to the T type C sub-member?
- Is the T type K-U, K-O or a special construction required instead of Isokorb® T type K for connections with height offset or to a wall?


Schöck Isokorb® T type C

Schöck Isokorb® T type C Suitable for cantilevered corner balconies. It transfers negative moments and positive shear forces.

Element arrangement | Installation cross sections

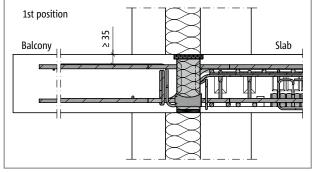


Fig. 62: Schöck Isokorb® T type C: Section 2nd position; connection with nonload-bearing cavity walls

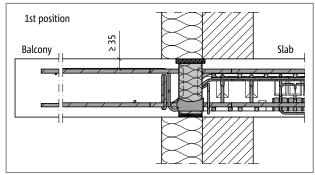
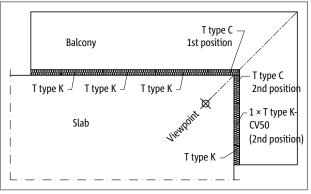



Fig. 64: Schöck Isokorb® T type C: Section 1st position; connection with thermal insulation composite system (TICS)

💶 Element arrangement

- Subcomponent 1st position and subcomponent 2nd position of the Schöck Isokorb® T type C cannot be interchanged.
- In connection with a Schöck Isokorb® T type C subcomponent 2nd position a Schöck Isokorb® T type K-CV50 element (2nd position) is always required.

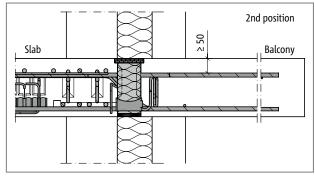


Fig. 63: Schöck Isokorb[®] T type C: Section 1st position; connection with nonload-bearing cavity walls

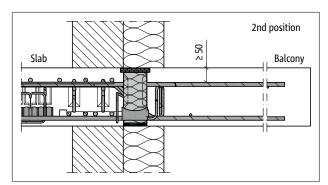
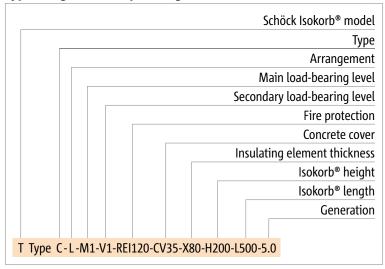


Fig. 65: Schöck Isokorb® T type C: Section 2nd position; connection with thermal insulation composite system (TICS)

Product selection | Type designations | Special designs

Schöck Isokorb® T type C variants


The Schöck Isokorb® T type C consists always of a subcomponent C-L 1st position and a subcomponent C-R 2nd position.

The configuration of a Schöck Isokorb® T type C can vary as follows:

Arrangement:

- 2 components: Subcomponent C-L 1st postion, subcomponent C-R 2nd position
- L = 1st position: Left from viewpoint on the floor
- R = 2nd position: Right from viewpoint on the floor
- Main load-bearing level: M1 to M3
- Secondary load-bearing level: V1
- Fire resistance class:
- REI120 (standard): Projection upper fire protection board, both sides 10 mm
- Concrete cover of the tension bars: CV30 = 30 mm, CV35 = 35 mm
- Insulating element thickness:
 - X80 = 80 mm
- Isokorb[®] height:H = 180 250 mm
- Insulating element length: L = 500 mm, 620 mm
- possible combinations:
- e.g. T type K-M2-CV35 with T type C-M2-CV35
- Generation:
 - 5.0

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

In accordance with approval heights up to 500 mm are possible.

Schöck Is	sokorb® T typ	be C	M1	M2	M3					
Design values with		te cover mm]	Concrete strength class ≥ C25/30							
with	CV30	CV35	M _R d,y [kNm] per subcomponent L 1st position and R 2nd position							
		180	-14.3	-28.7	-32.9					
	180		-15.1	-30.4	-34.8					
		190	-16.0	-32.0	-36.6					
	190		-16.9	-33.6	-38.4					
		200	-17.7	-35.2	-40.2					
	200		-18.6	-36.8	-42.0					
		210	-19.4	-38.4	-43.9					
lsokorb® height	210		-20.3	-40.0	-45.7					
H [mm]		220	-21.2	-41.6	-47.5					
	220		-22.0	-43.2	-49.3					
		230	-22.9	-44.8	-51.2					
	230		-23.7	-46.4	-53.0					
		240	-24.6	-48.0	-54.8					
	240		-25.5	-49.6	-56.6					
		250	-26.3	-51.2	-58.5					
	250		-27.2	-52.8	-60.3					
			V _{Rd} ,z [kN] per su	ubcomponent L 1st position and	R 2nd position					
Secondary	H = 180	-190 mm	37.3	78.6	91.1					
load-bearing level	H ≥ 2	00 mm	37.3	106.7	119.2					

Cebäck Isokovk® Thurs C	٨	11	N	12	M3		
Schöck Isokorb [®] T type C	L 1st position	R 2nd position	L 1st position	R 2nd position	L 1st position	R 2nd position	
Isokorb® length [mm]	500	500	620	620	620	620	
Tension bars	8 Ø 8	8 Ø 8	5 Ø 14	5 Ø 14	6 Ø 14	6 Ø 14	
Compression bars	-	-	3 Ø 14	3 Ø 14	4 Ø 14	4 Ø 14	
Pressure bearing	5	5	6	6	6	6	
Shear force bars H = 180 - 190 mm	3 Ø 8	3 Ø 8	3 Ø 8 + 2 Ø 10	3 Ø 8 + 2 Ø 10	4 Ø 8 + 2 Ø 10	4 Ø 8 + 2 Ø 10	
Shear force bars H ≥ 200 mm	3Ø8	3 Ø 8	3 Ø 8 + 2 Ø 12	3 Ø 8 + 2 Ø 12	4 Ø 8 + 2 Ø 12	4 Ø 8 + 2 Ø 12	
Special stirrups	-	-	2Ø6	2Ø6	2Ø6	2Ø6	

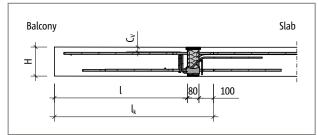
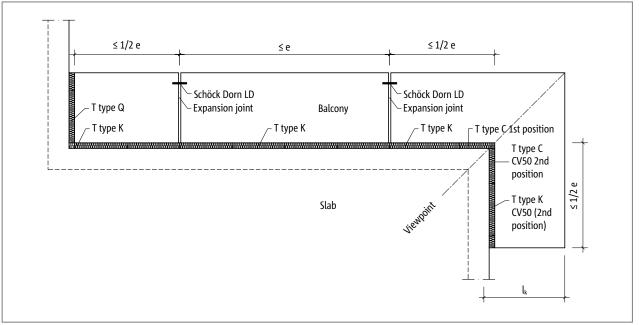


Fig. 66: Schöck Isokorb® T type C: Static system

Notes on design


- The Schöck Isokorb® T type C with small cantilever lengths can also be replaced through the combination Schöck Isokorb® T type K (1st position) and Schöck Isokorb® T type K-CV50 (2nd position).
- The design takes place according to F. Leonhardt's "Vorlesung über Massivbau" ["Lecture on solid construction"] Part 3, Chap. 8.3.4.
- The indicative minimum concrete strength class of the external structural component is C32/40.
- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- Note FEM guidelines if a FEM program is to be used for design.
- The deflection and required precamber of the balcony corner is to be determined depending on the overall system and the direction of drainage.

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component exceeds the maximum expansion joint spacing e, then expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. For fixed points such as corners of balconies, parapets and balustrades or when using the Schöck Isokorb[®] T type H, half the maximum expansion joint spacing e/2 applies out from the fixed point.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

Fig. 67: Schöck Isokorb® T type C: Expansion joint spacing

Schöck Isokorb® T type C	M1	M1, M2			
Maximum expansion joint spacing	e [m]				
Insulating element thickness [mm] 80	13.5	10.1			

Schöck Isokorb® type C combined with	T type K	T type Q, T type Q-VV	T type Q-P, T type Q-P-VV, T type Q-PZ	T type D
maximum expansion joint spacing from fixed point e/2 [m]	≤ e/2 see p. 36	≤ e/2 see p. 101	≤ e/2 see p. 117	≤ e/2 see p. 146

Edge distances

The Schöck Isokorb[®] must be so arranged at the expansion joint that the following conditions are met:

- For the centre distance of the tension bars from the free edge or from the expansion joint: $e_R \ge 50$ mm and $e_R \le 150$ mm applies.
- For the centre distance of the compression elements from the free edge or from the expansion joint: $e_R \ge 50$ mm applies.
- For the centre distance of the shear force bars from the free edge or from the expansion joint: $e_R \ge 100$ mm and $e_R \le 150$ mm applies.

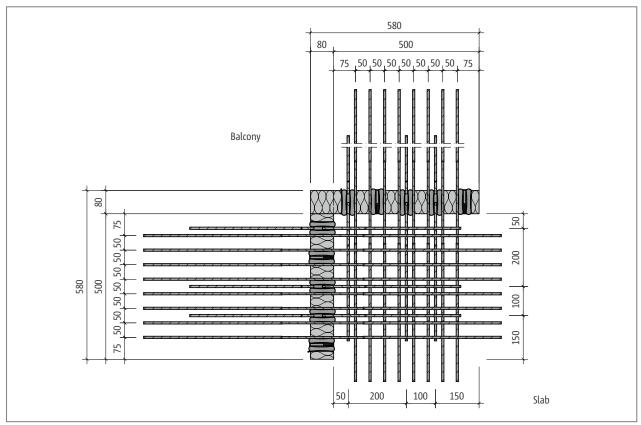


Fig. 68: Schöck Isokorb® T type C-M1: Product layout

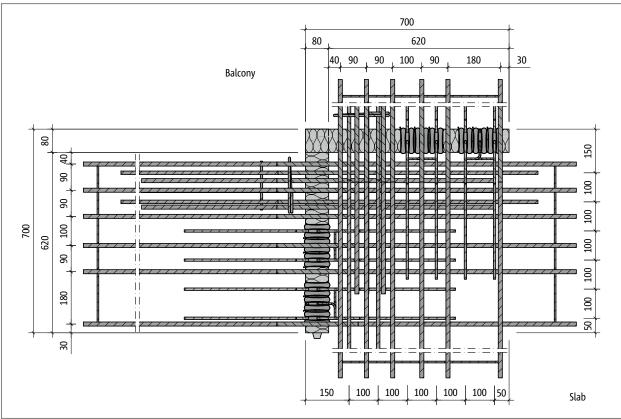


Fig. 69: Schöck Isokorb® T type C-M2: Product layout

Reinforced concrete – reinforced concrete

55

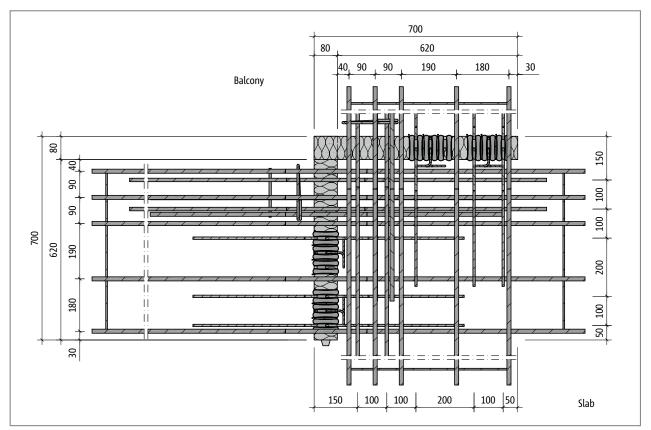


Fig. 70: Schöck Isokorb® T type C-M3: Product layout

Product information

> Download further product plan views and cross-sections at www.schoeck.co.uk/download

T type C

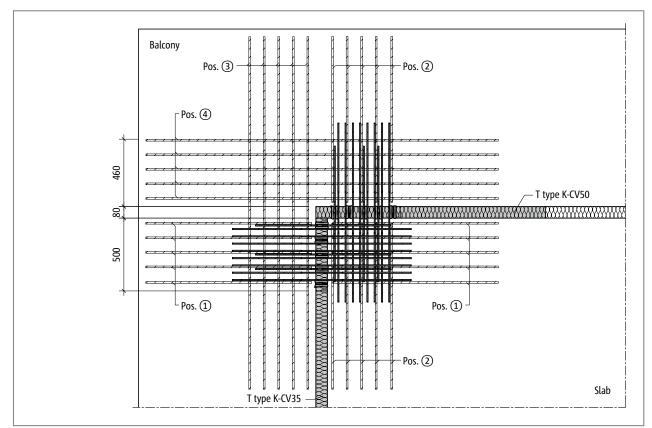


Fig. 71: Schöck Isokorb® T type C-M1: On-site reinforcement (top position)

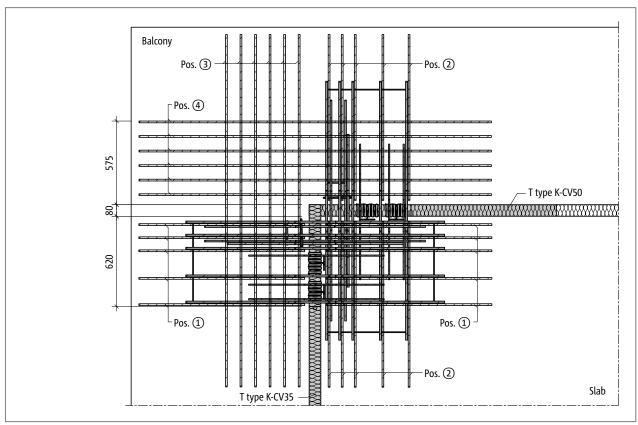
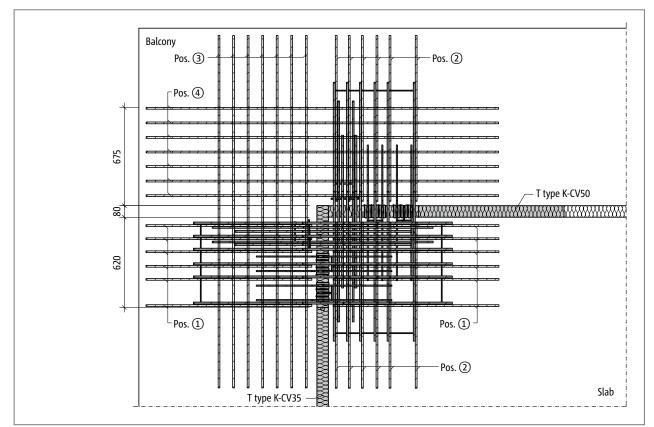



Fig. 72: Schöck Isokorb® T type C-M2: On-site reinforcement (top position)

T type C

Reinforced concrete – reinforced concrete

On-site reinforcement | Installation instructions

Fig. 73: Schöck Isokorb® T type C-M3: On-site reinforcement (top position)

Schöck	lsokorb® T type C	M1	M2	M3				
On-site reinforcement	Location	Concrete strength class ≥ C25/30						
Pos. 1 Lapping reinf	orcement							
Pos. 1	Balcony/floor side	2•5•H12@100	2 • 5 • H16	2 • 6 • H16				
Pos. 1 Bar length	Balcony/floor side	l - 70 mm	l - 70 mm	l - 70 mm				
Pos. 2 Overlapping	reinforcement							
Pos. 2	Balcony/floor side	2•5•H12@100	2 • 5 • H16	2 • 6 • H16				
Pos. 2 Bar length	Balcony/floor side	l - 70 mm	l - 70 mm	l - 70 mm				
Pos. 3 Steel bars alo	ng the insulation joint							
Pos. 3	Balcony side	5•H12@100	6•H16@100	7∙H16@100				
Pos. 3 Bar length	Balcony side	2 × l	2 × l	2 × l				
Pos. 4 Steel bars alo	Pos. 4 Steel bars along the insulation joint							
Pos. 4	Balcony side	5•H12@100	6∙H16@100	7∙H16@100				
Pos. 4 Bar length	Balcony side	2 × l	2 × l	2 × l				

Information about on-site reinforcement

- > The suspenson reinforcement and edging along the insulation joint is factory-integrated.
- Design of the overlap joints, precamber of the balcony slab and concrete cover according to the details from the structural engineer.
- With concreting, uniform filling and compacting on both sides is required for the positional security of the Schöck Isokorb[®].
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

Installation manual

Installation manual for T type C under www.schoeck.co.uk/download.

🗹 Check list

- With the corner balcony has the required 2nd position (-CV50) been taken into account?
 In the connection to the Schöck Isokorb[®] T type C (2nd position) is a Schöck Isokorb[®] T type K-CV50 planned?
- Is the minimum slab thickness (H_{min} = 180 mm) of the Schöck Isokorb[®] T type C taken into account?
- Are the recommendations for the limitation of the slenderness observed?
- Are the maximum allowable expansion joint spacings taken into account?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have the in-situ concrete strips (width ≥ 100 mm from insulation body of the Schöck Isokorb® T type C-M1, width ≥ 200 mm from insulation body of the Schöck Isokorb® T type C-M2 and T type C-M3) been charted in the implementation plans?
- Has the cantilevered system length or the system support width been taken as a basis?
- Are the Schöck FEM guidelines taken into account with the calculation using FEM?
- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- With the selection of the design table is the relevant concrete cover taken into account?
- Has the additional proportionate deflection resulting from the Schöck Isokorb[®] been taken into account?
- □ Is the drainage direction taken into account with the resulting camber information? Is the degree of camber entered in the working drawings?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- With precast balconies are possibly necessary gaps for the front side transportation anchors and downpipes with internal drainage taken into account? Is the maximum centre distance of 300 mm for the Isokorb® bars observed?
- Is the T type K-U, K-O or a special construction required instead of Isokorb® T type K for connections with height offset or to a wall?

Schöck Isokorb® T type K-U, K-O

Schöck Isokorb® T type K-U

Suitable for cantilevered balconies with height offset downward. The balcony lies lower than the floor slab. Suitable for cantilevered balconies, which are connected to a reinforced concrete wall above. It transfers negative moments and positive shear forces

Schöck Isokorb® T type K-O

Suitable for cantilevered balconies with height offset upwards The balcony lies higher than the floor slab. Suitable for cantilevered balconies, which are connected to a reinforced concrete wall at the bottom. It transfers negative moments and positive shear forces.

Product change

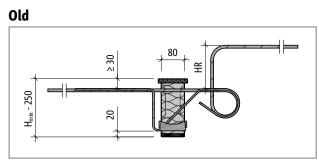


Fig. 74: Schöck Isokorb® T type K-HV: Product sectiont

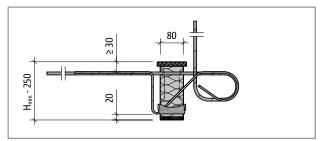


Fig. 76: Schöck Isokorb® T type K-WO: Product section

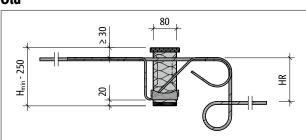


Fig. 77: Schöck Isokorb® T type K-BH: Product section

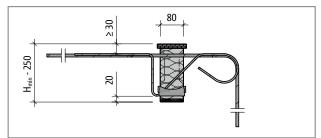


Fig. 79: Schöck Isokorb® T type K-WU: Product section

Product change

- ▶ The Schöck Isokorb® T type K-HV and the Schöck Isokorb® T type K-WO are replaced by the Schöck Isokorb® T type K-U.
- ▶ The Schöck Isokorb® T type K-BH and the Schöck Isokorb® T type K-WU are replaced by the Schöck Isokorb® T type K-O.

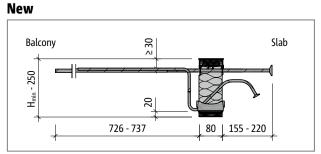


Fig. 75: Schöck Isokorb® T type K-U: Product section

New

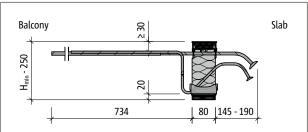


Fig. 78: Schöck Isokorb® T type K-O: Product section

ŠQ-

Balcony with height offset downwards with Schöck Isokorb® T type K

Height offset h_v ≤ h_D - c_a - d_s - c_i

▶ If $h_v \le h_D - c_a - d_s - c_i$ then the Schöck Isokorb[®] T type K with straight tension bar can be selected.

 h_v = height offset

h_D = floor thickness

c_a = concrete cover outside

s = diameter tension bar Isokorb

c_i = required concrete cover inside

H = Isokorb[®] height

Example: Schöck Isokorb® T type K-M5-CV35

h_D = 180 mm, c_a = 35 mm, d_s = 8 mm, c_i = 30 mm

max. h_v = 180 - 35 - 8 - 30 = 107 mm

Recommendation: Downstand beam width at least 220 mm

With floor-side arrangement of element slabs for c_i the element slab thickness + ω_s is to be applied.

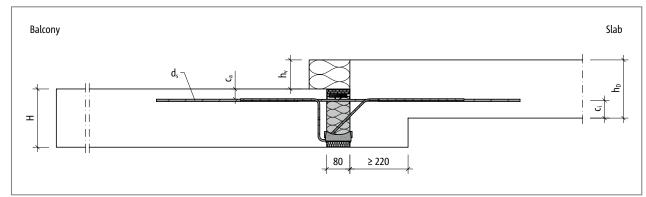
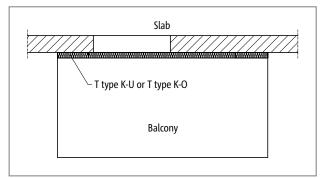



Fig. 80: Schöck Isokorb® T type K: Smaller height offset downwards (balcony lying lower)

Height offset h_v > h_D - c_a -d_s -c_i

If the condition $h_v \le h_D - c_a - d_s - c_i$ is not met, the connection can be implemented using Schöck Isokorb[®] T type K-U.

Element arrangement | Installation cross sections

Fig. 81: Schöck Isokorb® T type K-U/K-O: Cantilevered balcony

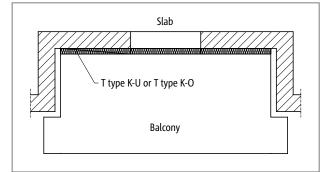


Fig. 83: Schöck Isokorb® T type K-U/K-O: Balcony with façade recess

Balcony with height offset upwards

Fig. 85: Schöck Isokorb® T type K-O: Balcony with height offset upwards and external insulation

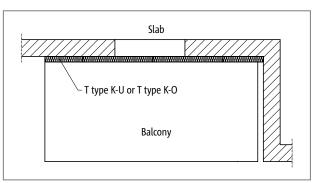


Fig. 82: Schöck Isokorb® T type K-U/K-O: Balcony with façade offset

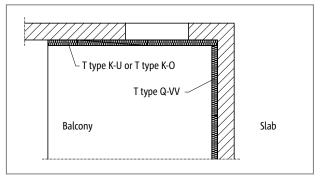


Fig. 84: Schöck Isokorb® T type K-U/K-O, T type Q-VV: Balcony with inside corner, double-faced supported

Balcony with height offset downwards

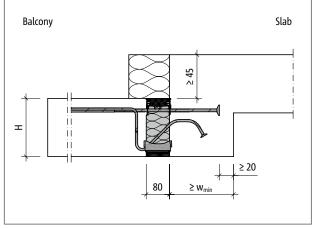


Fig. 86: Schöck Isokorb® T type K-U: Balcony with height offset downwards and external insulation

Installation cross sections

Wall connection upwards

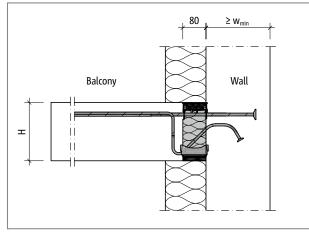


Fig. 87: Schöck Isokorb® T type K-U: Wall connection upwards with external insulation

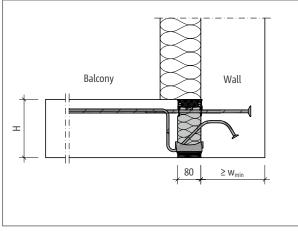


Fig. 89: Schöck Isokorb® T type K-U: Wall connection upwards with external insulation

Wall connection downwards

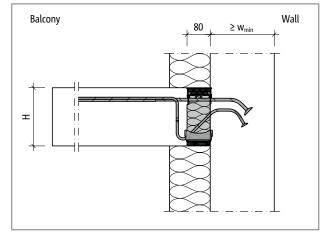


Fig. 88: Schöck Isokorb® T type K-O: Wall connection downwards with external insulation

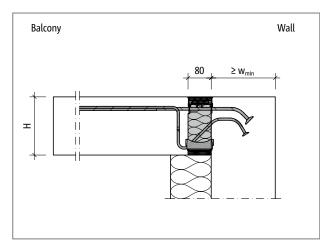
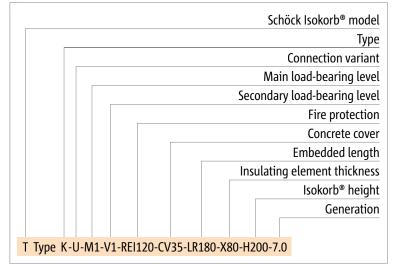


Fig. 90: Schöck Isokorb® T type K-O: Wall connection downwards with external insulation

🤨 Geometry

- The employment of the Schöck Isokorb® T types K-U and K-O requires a minimum wall thicknesss and a minimum girder width of 175 mm.
- Depending on the Schöck Isokorb[®] type selected and on the selected Isokorb[®] height, a minimum component dimension of w_{min} is required (see page 68).
- A minimum concrete cover of 60 mm above the anchor head must be complied with.


Product selection | Type designations | Special designs

Schöck Isokorb® T type K-U variants

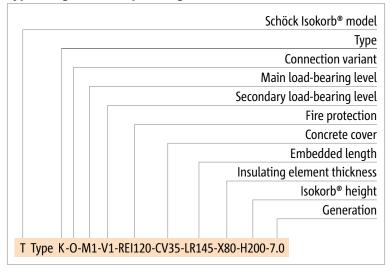
The configuration of the Schöck Isokorb[®] T type K-U can be varied as follows:

- Main load capacity: M1 to M4
- Secondary load capacity: V1
- Fire resistance class: REI120 (standard):
- Concrete cover of the tension bars:
- CV30 = 30 mm, CV35 = 35 mm, CV50 = 50 mm
- Embedded length: LR = 155 mm to 220 mm; depends on the Isokorb® height, see page 68.
- Insulating element thickness:
- X80 = 80 mm
- Isokorb® height:
 - H = 160 250 mm for concrete cover CV30, CV35
 - H = 180 250 mm for concrete cover CV50
- Generation: 7.0

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).


Product selection | Type designations | Special designs

Schöck Isokorb® T type K-O variants

The configuration of the Schöck Isokorb® T type K-O can be varied as follows:

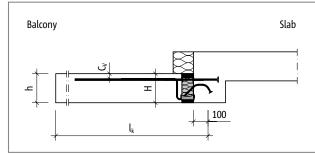
- Main load-bearing level: M1 to M4
- Secondary load-bearing level: V1
- Fire resistance class: REI120 (standard):
- Concrete cover of the tension bars:
 CV30 = 30 mm, CV35 = 35 mm, CV50 = 50 mm
- Embedded length: LR = 145 mm to 190 mm; depends on the Isokorb[®] height, see page 68.
- Insulating element thickness:
 - X80 = 80 mm
- Isokorb® height:
 - H = 160 250 mm for concrete cover CV30, CV35
 - H = 180 250 mm for concrete cover CV50
- Generation: 7.0

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

Minimum component dimensions


Schöck Isokorb® T type K-U			M1 - M4						
minimum component		CV30/	/CV35	cv	50				
dimens		w _{min} [mm] LR [mm]		w _{min} [mm]	LR [mm]				
	160	175	155	-	-				
	170	175	155	-	-				
Isokorb®	180	175	155	175	155				
	190	175	155	175	155				
	200	200	180	175	155				
height H [mm]	210	200	180	175	155				
[]	220	220	200	200	180				
-	230	220	200	200	180				
	240	240	220	220	200				
	250	240	220	220	200				

Schöck Isokorb® T ype K-O			M1 ·	· M4		
minimum component		CV30/	CV35	CV50		
	sion for	w _{min} [mm] LR [mm]		w _{min} [mm]	LR [mm]	
	160	175	145	-	-	
	170	175	145	-	-	
	180	175	145	175	145	
	190	175	145	175	145	
Isokorb®	200	175	145	175	145	
height H [mm]	210	175	145	175	145	
[]	220	190	170	175	145	
	230	190	170	175	145	
	240	210	190	190	170	
	250	210	190	190	170	

Design

🚺 Notes on design

- With CV50, H = 180 mm is the lowest Isokorb[®] height, this requires a minimum slab thickness of h = 180 mm.
- The employment of the Schöck Isokorb® T types K-U and K-O requires a minimum wall thicknesss and a minimum girder width of 175 mm.
- The employment of the Schöck Isokorb[®] T types K-U and K-O with further connection situations (175 mm ≤ w_{previously} < w_{min}) is possible taking into consideration reduced load-bearing capacity. Please make contact the Schöck Design Department (see page3).
- Depending on the Schöck Isokorb[®] type selected and on the selected Isokorb[®] height, a minimum component dimension of w_{min} is required (see page 68).
- ▶ The design values for Schöck Isokorb® T type K-U depend on the exisiting girder width and wall thickness (w_{exist}).
- A minimum concrete cover of 60 mm above the anchor head must be complied with.
- Direction of the load application in the neighbouring structural element determines the Isokorb[®] connection variant.

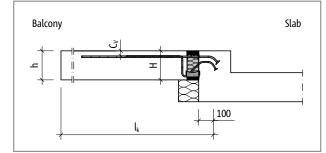


Fig. 91: Schöck Isokorb® T type K-U: Static system

Fig. 92: Schöck Isokorb® T type K-O: Static system

Design table T type K-U

Schöck Isokorb® T type K-U			I	M1	M2	M3	M4	
Destance	Concrete cover			Concrete strength class ≥ C25/30				
Design values with		CV [mm]		200 mm > downstand beam width ≥ 175 mm 200 mm >wall thickness ≥ 175 mm				
	CV30	CV35	CV50		m _{Rd,y} [k	Nm/m]		
		160		-11.5	-15.4	-19.2	-26.1	
	160		180	-12.2	-16.3	-20.4	-27.7	
		170		-12.9	-17.3	-21.6	-29.3	
Isokorb® height	170		190	-13.7	-18.2	-22.8	-30.9	
H [mm]		180		-14.4	-19.2	-23.9	-32.5	
	180		200	-15.1	-20.1	-25.1	-34.1	
		190		-16.0	-21.1	-26.3	-35.7	
	190		210	-16.5	-22.0	-27.5	-37.4	
				v _{Rd,z} [kN/m]				
	V1			61.7	92.5	92.5	92.5	

Schöck Isokorb® T type K-U			I	M1	M2	М3	M4
	Concrete cover			Concrete strength class ≥ C25/30			
Design values with		CV [mm]		220 mm > downstand beam width ≥ 200 mm 220 mm >wall thickness ≥ 200 mm			
	CV30	CV35	CV50		m _{rd,y} [k	Nm/m]	
		160		-15.1	-20.1	-25.1	-34.1
	160		180	-16.0	-21.3	-26.6	-36.2
		170		-16.9	-22.5	-28.2	-38.3
	170		190	-17.8	-23.8	-29.7	-40.4
		180		-18.8	-25.0	-31.3	-42.5
Isokorb® height	180		200	-19.7	-26.3	-32.8	-44.6
H [mm]		190		-20.6	-27.5	-34.4	-46.7
	190		210	-21.6	-28.7	-35.9	-48.8
		200		-22.5	-30.0	-37.5	-50.9
	200		220	-23.4	-31.2	-39.0	-53.0
		210		-24.3	-32.5	-40.6	-55.1
	210		230	-25.3	-33.7	-42.1	-57.2
	V1				V _{Rd,z} [«N/m]	
				61.7	92.5	92.5	92.5

Notes on design
 Static system and information on the design see page 69.

Design table T type K-U

Schöck Is	Schöck Isokorb® T type K-U			M1	M2	M3	M4
Design unlines	Concrete cover CV [mm]			Concrete strength class ≥ C25/30			
Design values with				Downstand beam width ≥ 220 mm wall thickness ≥ 220 mm			
	CV30	CV35	CV50		m _{Rd,y} [k	Nm/m]	
		160		-16.6	-24.3	-30.4	-40.4
	160		180	-17.6	-25.8	-32.2	-42.9
		170		-18.7	-27.3	-34.1	-45.6
	170		190	-19.8	-28.8	-36.0	-48.1
		180		-20.9	-30.3	-37.8	-50.8
	180		200	-22.0	-31.8	-39.7	-53.3
		190		-23.1	-33.3	-41.6	-55.1
	190		210	-24.2	-34.8	-43.5	-58.6
		200		-25.3	-36.3	-45.3	-61.3
	200		220	-26.4	-37.8	-47.2	-63.9
		210		-27.6	-39.3	-49.1	-66.6
	210		230	-28.7	-40.8	-51.0	-69.2
		220		-29.9	-42.3	-52.8	-71.7
	220		240	-31.0	-43.8	-54.7	-74.3
lsokorb® height		230		-32.2	-45.3	-56.6	-76.8
H [mm]	230		250	-33.3	-46.8	-58.4	-79.4
		ncrete co CV [mm]			Downstand beam wall thickne	ı width ≥ 240 mm ss ≥ 240 mm	
	CV30	CV35	CV50		m _{rd,y} [k	Nm/m]	
		240		-34.5	-48.3	-60.3	-81.9
	240			-35.6	-49.8	-62.2	-84.5
		250		-36.8	-51.3	-64.1	-87.0
	250			-38.0	-52.8	-65.9	-89.6
					V _{Rd,z} [(N/m]	
	V1			61.7	92.5	92.5	92.5

Schöck Isokorb® T type K-U	M1	M2	M3	M4
Isokorb® length [mm]	1000	1000	1000	1000
Tension bars	4 Ø 12	6 Ø 12	8 Ø 12	10 Ø 12
Anchor bars	4 Ø 10	6 Ø 10	8 Ø 10	10 Ø 10
Shear force bars V1	4 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8
Pressure bearing (piece)	6	8	10	16
Special stirrup (piece)	-	-	-	4

Notes on design
 Static system and information on the design see page 69.

<u>S</u> S S S

Design table T type K-O

Schöck Isokorb® T ype K-O				M1	M2	M3	M4		
Desien velves	Concrete cover CV [mm]			Concrete strength class ≥ C25/30					
Design values with						n width ≥ 175 mm ess ≥ 175 mm			
	CV30	CV35	CV50						
		160		-16.6	-24.3	-30.4	-40.4		
	160		180	-17.6	-25.8	-32.2	-42.9		
		170		-18.7	-27.3	-34.1	-45.6		
	170		190	-19.8	-28.8	-36.0	-48.1		
		180		-20.9	-30.3	-37.8	-50.8		
	180		200	-22.0	-31.8	-39.7	-53.3		
		190		-23.1	-33.3	-41.6	-56.0		
	190		210	-24.2	-34.8	-43.5	-58.6		
		200		-25.3	-36.3	-45.3	-61.3		
	200		220	-26.4	-37.8	-47.2	-63.9		
Isokorb® height		210		-27.6	-39.3	-49.1	-66.6		
H [mm]	210		230	-28.7	-40.8	-51.0	-69.2		
	Concrete cover CV [mm]			Downstand beam width ≥ 190 mm wall thickness ≥ 190 mm					
	CV30	CV35	CV50		m _{Rd.y} [kNm/m]				
		220		-29.9	-42.3	-52.8	-71.7		
	220		240	-31.0	-43.8	-54.7	-74.3		
		230		-32.2	-45.3	-56.6	-76.8		
	230		250	-33.3	-46.8	-58.4	-79.4		
		ncrete co CV [mm]		Downstand beam width ≥ 210 mm wall thickness ≥ 210 mm					
	CV30	CV35	CV50		m _{Rd,y} [l	‹Nm/m]			
		240		-34.5	-48.3	-60.3	-81.9		
	240			-35.6	-49.8	-62.2	-84.5		
		250		-36.8	-51.3	-64.1	-87.0		
	250			-38.0	-52.8	-65.9	-89.6		
					V _{Rd,z} [kN/m]			
	V1			61.7	92.5	92.5	92.5		

Schöck Isokorb® T ype K-O	M1	M2	M3	M4
Isokorb [®] length [mm]	1000	1000	1000	1000
Tension bars	4 Ø 12	6 Ø 12	8 Ø 12	10 Ø 12
Anchor bars	4 Ø 10	6 Ø 10	8 Ø 10	10 Ø 10
Shear force bars V1	4 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8
Pressure bearing (piece)	6	8	10	16
Special stirrup (piece)	-	-	-	4

Notes on design

Static system and information on the design see page 69.

T type K-O K-U

Deflection/Camber

Deflection

The deflection factors given in the table (tan α [%]) result alone from the deflection of the Schöck Isokorb[®] under 100% steel utilisation. They serve for the estimation of the required camber. The total arithmetic camber of the balcony slab formwork results from the calculation according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA plus the deflection from Schöck Isokorb[®]. The camber of the balcony slab formwork to be given by the structural engineer/designer in the implementation plans (Basis: Calculated total deflection from cantilever slab + floor rotation angle + Schöck Isokorb[®]) should be so rounded that the scheduled drainage direction is maintained (round up: with drainage to the building facade, round down: with drainage towards the cantilever slab end).

Deflection (p) as a result of Schöck Isokorb®

Deflection (p) as a result of	I JUIIOUK ISOK	
	р	= tan $\alpha \cdot l_k \cdot (m_{pd} / m_{Rd}) \cdot 10 \text{ [mm]}$
Factors to be applied		
	tan α	= apply value from table
	l _k	= cantilever length [m]
	\mathbf{m}_{pd}	= relevant bending moment [kNm/m] in the ultimate limit state for the determination of the p [mm] from Schöck Isokorb [®] .
		The load combination to be applied for the deflection is determined by the structural engineer.
		(Recommendation: Load combination for the determination of the camber p : determine $g+q/2$, m_{pd} in the ultimate limit state)
	m _{Rd}	= maximum design moment [kNm/m] of the Schöck Isokorb®

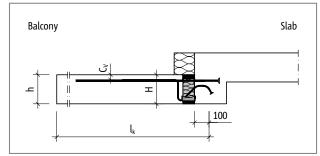


Fig. 93: Schöck Isokorb® T type K-U: Static system



Fig. 94: Schöck Isokorb® T type K-O: Static system

Deflection/Camber

Schöck Isok	orb® T type		K-U	
			tan α [%]	
Deflection factors when		200 mm > w _{exist} ≥ 175 mm		
		CV30	CV35	CV50
	160	0.8	0.9	-
	170	0.7	0.8	-
lsokorb®	180	0.7	0.7	0.8
height	190	0.6	0.6	0.7
	200	-	-	0.7
	210	-	-	0.6

Schöck Isok	orb® T type		K-U							
			tan α [%]							
Deflection fa	actors when		220 mm > w _{exist} ≥ 200 mm							
		CV30	CV35	CV50						
	160	1.0	1.0	-						
	170	0.9	0.9	-						
	180	0.8	0.8	1.0						
lsokorb®	190	0.7	0.7	0.9						
height	200	0.7	0.7	0.8						
	210	0.6	0.6	0.7						
-	220	-	-	0.7						
	230	-	-	0.6						

Schöck Isoko	orb® T type		K-U						
		tan α [%]							
Deflection fa	actors when		w _{exist} ≥ 220 mm						
		CV30	CV30 CV35						
	160	1.1	1.1	-					
-	170	0.9	1.0	-					
-	180	0.9	0.9	1.1					
-	190	0.8	0.8	0.9					
lsokorb®	200	0.7	0.7	0.9					
height	210	0.7	0.7	0.8					
-	220	0.7	0.6	0.7					
-	230	0.6	0.6	0.7					
-	240	0.5	0.6	0.7					
-	250	0.5	0.5	0.6					

i Notes on deformation

- The design values for Schöck Isokorb[®] T type K-U depend on the exisiting downstand beam width and wall thickness (w_{exist}).
 The minimum structural element dimension w_{min} = 240 mm vor CV30 and CV35 is to be complied with for H ≥ 240 mm.

Schöck Isok	orb® T type		K-O							
			tan α [%]							
Deflection fa	actors when		w _{exist} ≥ 175 mm							
		CV30	CV35	CV50						
	160	1.1	1.1	-						
	170	0.9	1.0	-						
	180	0.9	0.9	1.1						
	190	0.8	0.8	0.9						
lsokorb®	200	0.7	0.7	0.9						
height	210	0.7	0.7	0.8						
	220	0.7	0.6	0.7						
	230	0.6	0.6	0.7						
	240	0.5	0.6	0.6						
	250	0.5	0.5	0.6						

Deflection/Camber | Slenderness

Slenderness

In order to safeguard the serviceability limit state we recommend the limitation of the slenderness to the following maximum cantilever lengths max l_k [m]:

Schöck Isok	orb® T type		K-U K-O						
maximum	cantilever	l _{k,max} [m]							
lengti	n with	CV30	CV30 CV35 C						
	160	1.81	1.74	-					
	170	1.95	1.88	-					
	180	2.10	2.03	1.81					
	190	2.25	2.17	1.95					
lsokorb®	200	2.39	2.32	2.10					
height H [mm]	210	2.54	2.46	2.25					
[]	220	2.68	2.61	2.39					
	230	2.83	2.76	2.54					
	240	2.98	2.90	2.68					
	250	3.12	3.05	2.83					

Maximum cantilever length

- The tabular values are based on the following assumptions:
- Accessible balcony
- Specific weight of concrete γ=25 kN/m³
- **b** Dead weight of the balcony surfacing $g_2 \le 1.2 \text{ kN/m}^2$
- Balcony rail $g_R \le 0.75 \text{ kN/m}$

Maximum cantilever length

The maximum cantilevered length for ensuring the serviceability is a benchmark. It can be limited by the load bearing capacity when using the Schöck Isokorb® T type K.

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component exceeds the maximum expansion joint spacing e, then expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. For fixed points such as corners of balconies, parapets and balustrades or when using the Schöck Isokorb[®] T type H, half the maximum expansion joint spacing e/2 applies out from the fixed point.

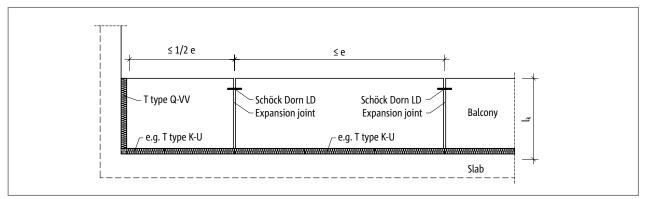


Fig. 95: Schöck Isokorb® T type K-U: Expansion joint layout

Schöck Isokorb® T type		К-U К-О
Maximum expansion joint spacing e		e [m]
Insulating element thickness [mm]	80	13.0

Edge distances

The Schöck Isokorb® must be so arranged at the expansion joint that the following conditions are met:

- For the centre distance of the tension bars from the free edge or from the expansion joint: $e_R \ge 50$ mm and $e_R \le 150$ mm applies.
- For the centre distance of the compression elements from the free edge or from the expansion joint: $e_R \ge 50$ mm applies.
- For the centre distance of the shear force bars from the free edge or from the expansion joint: $e_R \ge 100$ mm and $e_R \le 150$ mm applies.

Product description

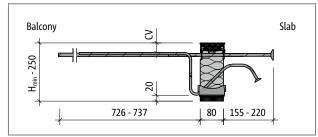


Fig. 96: Schöck Isokorb® T type K-U-M2: Product section

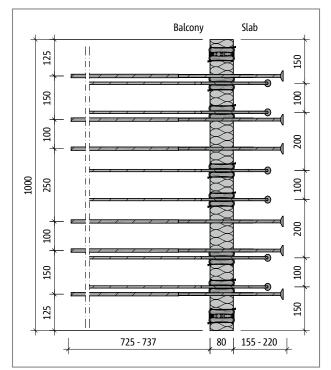


Fig. 98: Schöck Isokorb® T type K-U-M2: Product layout

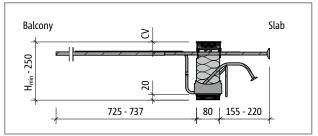


Fig. 97: Schöck Isokorb® T type K-U-M4: Product section

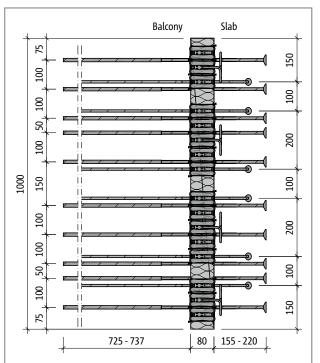


Fig. 99: Schöck Isokorb® T type K-U-M4: Product layout

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Minimum height Schöck Isokorb[®] T type K-U: H_{min} = 160 mm
- On-site spacing of the Schöck Isokorb® type K-U possible at the unreinforced points; take into account reduced load-bearing capacity due to spacing; take into account required edge distances
- Concrete cover of the tension bars: CV30 = 30 mm, CV35 = 35 mm, CV50 = 50 mm

<u>с</u> Ч

Product description

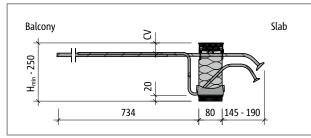


Fig. 100: Schöck Isokorb® T type K-O-M2: Product section

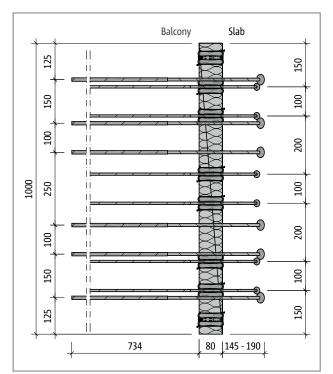


Fig. 102: Schöck Isokorb® T type K-O-M2: Product layout

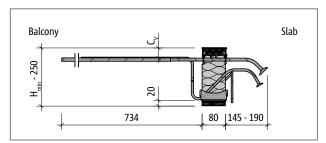


Fig. 101: Schöck Isokorb® T type K-O-M4: Product section

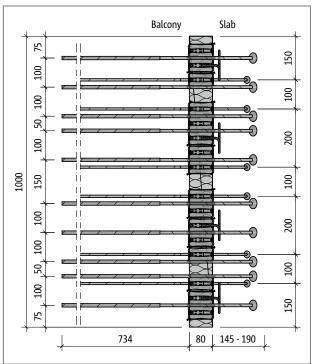


Fig. 103: Schöck Isokorb® T type K-O-M4: Product layout

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Minimum height Schöck Isokorb[®] T type K-O: H_{min} = 160 mm
- On-site spacing of the Schöck Isokorb® type K-O possible at the unreinforced points; take into account reduced load-bearing capacity due to spacing; take into account required edge distances
- Concrete cover of the tension bars: CV30 = 30 mm, CV35 = 35 mm, CV50 = 50 mm

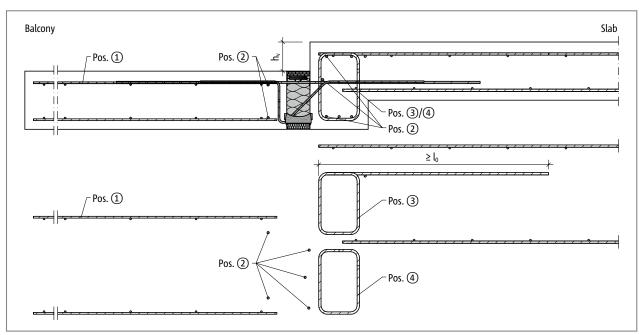


Fig. 104: Schöck Isokorb® T type K: On-site reinforcement for small height offset

Recommendation for on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; variants adapted to load-bearing level. The required reinforcement cross-section depends on the bar diameter of the steel bar or wire mesh reinforcement.

Schöck Isok	Schöck Isokorb® T type K:			M1		M2		М3	
	Shear force variant		V1	V2	V3	VV1	V1	V2	V3
On-site reinforcement	Location	Height [mm]			Concrete	Concrete strength class ≥ C25/30			
Pos. 1 overlap reinforce	ment dependin	g on bar di	ameter						
Pos. 1 with Ø8 [mm²/m]			242	215	443	416	578	544	564
Pos. 1 with Ø10 [mm²/m]	Balcony side	160 - 250	271	252	476	457	619	596	641
Pos. 1 with Ø12 [mm²/m]			325	302	571	548	743	715	769
Pos. 2 Steel bars along	the insulation jo	oint							
Dec. 2	Balcony side	160 - 250				2 • H8			
Pos. 2	Floor side	160 - 250				3 • H8			
Pos. 3 stirrup reinforcer	ment for redirec	tion of the	tension for	e (single-she	ear chargeab	le)			
Pos. 3 [mm²/m]	Floor side	160	235	266	422	453	510	549	621
Pos. 3 [mm²/m]	Floor side	250	375	406	698	730	845	884	969
Pos. 4 Stirrup reinforce	ment acc. to she	ar force de	sign						
Pos. 4	Floor side	160 - 250	S	tirrup reinfor	cement accor	ding to BS EN	l 1992-1-1 (EC	2), 6.2.3, 9.2	.2

Schöck Isokorb® T type K:			M4			M5			M6					
<u> </u>	Secondary load-b	ondary load-bearing level		V2	V3	VV1	V1	V2	V3	VV1	V1	V2	VV1	VV
On-site reinforcement	Location	Height [mm]		·		C	oncrete	strengt	h class:	≥ C25/3	30		-	
Pos. 1 overlap reinforce	Pos. 1 overlap reinforcement depending on bar diameter													
Pos. 1 with Ø8 [mm²/m]			655	622	622	704	757	724	775	754	861	827	844	880
Pos. 1 with Ø10 [mm²/m]	Balcony side	160 - 250	698	675	699	717	802	779	856	768	908	884	915	880
Pos. 1 with Ø12 [mm²/m]			838	810	839	861	963	934	1027	922	1089	1061	986	880
Pos. 2 Steel bars along	the insulation jo	oint					<u>`</u>							
D	Balcony side	160 - 250						2.	H8					
Pos. 2	Floor side	160 - 250						3.	H8					
Pos. 3 stirrup reinforce	ment for redirec	tion of the	tensio	n force	(single-	shear c	hargeal	ole)						
Pos. 3 [mm²/m]	Floor side	160	582	621	674	480	679	718	821	528	780	819	889	653
Pos. 3 [mm²/m]	Floor side	250	970	1009	1062	926	1140	1179	1320	1012	1319	1356	1441	1233
Pos. 4 Stirrup reinforce	Pos. 4 Stirrup reinforcement acc. to shear force d													
Pos. 4	Floor side	160 - 250		Stir	rup rein	forcem	ent acco	rding to	BS EN	1992-1-	1 (EC2),	6.2.3, 9	.2.2	

Schöck Isokorb® T type K:				M7		M8			
0 "	Secondary load-be	earing level	V1	V2	VV1	V1	V2	VV1	
On-site reinforcement	Location Height [mm]		Concrete strength class ≥ C25/30						
Pos. 1 overlap reinforce	ement dependin	g on bar di	ameter						
Pos. 1 with Ø8 [mm²/m]			959	959	990	1068	1068	1100	
Pos. 1 with Ø10 [mm²/m]		160 - 250	1012	1030	990	1130	1139	1100	
Pos. 1 with Ø12 [mm²/m]			1065	1101	990	1192	1210	1100	
Pos. 2 Steel bars along	the insulation jo	oint							
Dec 2	Balcony side	160 - 250			2•	H8			
Pos. 2	Floor side	160 - 250			3.	H8			
Pos. 3 stirrup reinforce	ment for redirec	tion of the	tension force	(single-shear c	hargeable)				
Pos. 3 [mm²/m]	Floor side	160	970	1005	819	1102	1120	935	
Pos. 3 [mm²/m]	Floor side	250	1615	1651	1490	1841	1859	1704	
Pos. 4 Stirrup reinforce	ment acc. to she	ar force de	sign	·					
Pos. 4	Floor side	160 - 250	Stir	rup reinforcem	ent according to	BS EN 1992-1-	1 (EC2), 6.2.3, 9	.2.2	

Information about on-site reinforcement

- > Due to the reinforcement density in the beam application is only recommended up to T type K-M8.
- For the redirection of the tension force on the floor-side, a stirrup reinforcement Pos. 3 is required in the floor edge beam (upper side length l_{0,bū}). This stirrup reinforcement Pos.3 safeguards the load transmission from the Schöck Isokorb[®].
- When reinforcing with different diameters the reinforcement specification for the largest diameter is relevant.
- The shear force reinforcement Pos. 4 conforms to the loading of balcony, floor and the supporting width of the downstand/ upstand beam. Therefore the shear force reinforcement in individual cases is to be verified by the structural engineer.
- The required lateral reinforcement in the overlap area is to be verified according to BS EN 1992-1-1 (EC2), 8.7 to 8.8 and BS EN 1992-1-1/NA, NDPs nd NCIs to 8.7 and 8.8.
- The Schöck Isokorb® T type K is to be placed as necessary before the installation of the downstbeam and or upstand beam reinforcement.
- Pos. 3: Value for Isokorb® heights between 160 mm and 250 mm may be interpolated.
- Pos. 3: For larger downstand beam widths a reduction of the required reinforcement acc. to the structural engineer's details is possible.
- The indicative minimum concrete strength class of the external structural component is C32/40.

Ttype K-U K-U

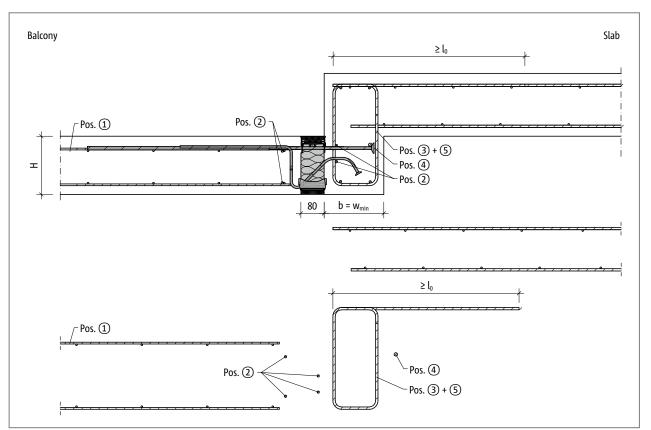


Fig. 105: Schöck Isokorb[®] T type K-U: On-site reinforcement for balcony with height offset downwards with minimum structural element dimension ($w_{exist} = w_{min}$)

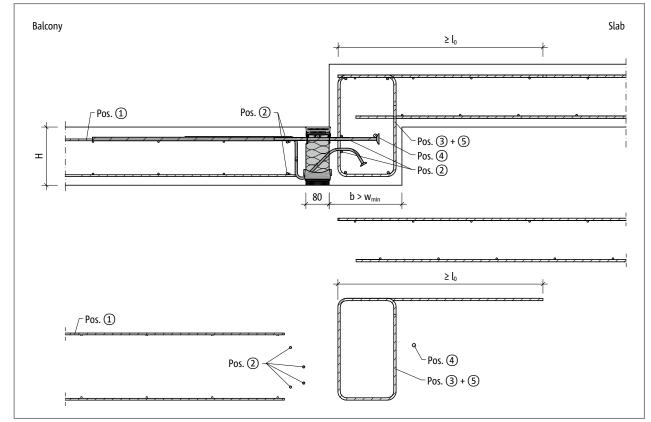


Fig. 106: Schöck Isokorb® T type K-U: On-site reinforcement for balcony with height offset downwards with larger structural element dimension (w_{exist} = w_{min})

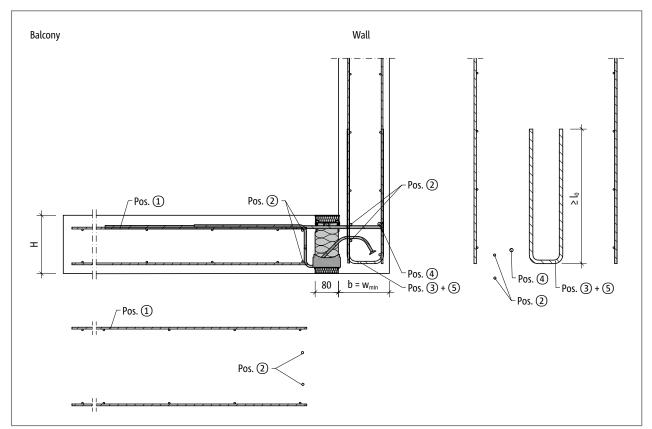


Fig. 107: Schöck Isokorb® T type K-U: On-site reinforcement for wall connection with minimum structural element dimension (w_{exist}= w_{min})

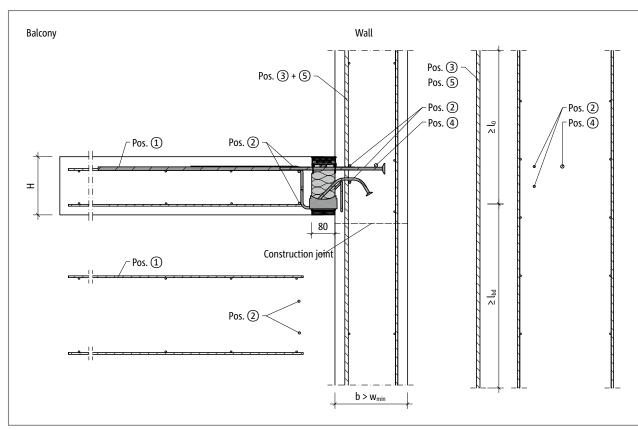


Fig. 108: Schöck Isokorb® T type K-U: On-site reinforcement for wall connection upwards with larger structural element dimension (w_{exist}= w_{min})

Recommendation for on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; variants adapted to load-bearing level. The required reinforcement cross-section depends on the bar diameter of the steel bar or wire mesh reinforcement.

Schöck Isoko	b® T type K-U		M1	M2	М3	M4		
On-site	Location	Height		Concrete strength class ≥ C25/30				
reinforcement	LUCALIUII	[mm]	2	•••••••••••••••••••	beam width ≥ 175 m ickness ≥ 175 mm	m		
Pos. 1 overlap reinforceme	ent depending on	bar diame	eter					
Pos. 1 with Ø8 [mm²/m]	Balcony side		327	436	545	740		
Pos. 1 with Ø10 [mm²/m]		160 - 210	363	489	598.	794		
Pos. 1 with Ø12 [mm²/m]			398	543	652	847		
Pos. 2 Steel bars along the	insulation joint							
Pos. 2	balcony side/ downstand beam, wall	160 - 210		2 • 2	• H8			
Pos. 3 Vertical reinforceme	ent							
Pos. 3 [mm²/m] minimum reinforcement	downstand beam, wall	160 - 210	≥ 528	≥ 737	≥ 846	≥ 1041		
Pos. 3 structural element design	downstand beam, wall	160 - 210	Taking into account the moments and shear forces provided by the structural engineer					
Pos. 4 Steel bars along the	insulation joint							
Pos. 4	downstand beam, wall	160 - 210) ≥ 1 ø 12					
Pos. 5 splitting tension rei	nforcement							
Pos. 5 [mm²/m]	downstand beam, wall	160 - 210		1	30			

Schöck Isokorb® T type K-U			M1	M2	M3	M4		
On-site	Location	Height	Concrete strength class ≥ C25/30					
reinforcement	LOCATION	[mm]	2.	20 mm > downstand 220 mm >wall th		m		
Pos. 1 overlap reinforceme	ent depending on	bar diame	eter					
Pos. 1 with Ø8 [mm²/m]	Balcony side		427	570	712	967		
Pos. 1 with Ø10 [mm²/m]		160 - 230	463	623	765	1020		
Pos. 1 with Ø12 [mm²/m]			498	676	818	1074		
Pos. 2 Steel bars along the	insulation joint							
Pos. 2	balcony side/ downstand beam, wall	160 - 230		2 • 2	• H8			
Pos. 3 Vertical reinforceme	ent							
Pos. 3 [mm ² /m] minimum reinforcement	downstand beam, wall	160 - 230	≥ 628	≥ 871	≥ 1013	≥ 1268		
Pos. 3 structural element design	downstand beam, wall	160 - 230	Taking into account th	ne moments and shea	r forces provided by th	ne structural enginee		
Pos. 4 Steel bars along the	insulation joint							
Pos. 4	downstand beam, wall	160 - 230	≥ 1 ø 12					
Pos. 5 splitting tension rei	nforcement							
Pos. 5 [mm²/m]	downstand beam, wall	160 - 230		1	30			

84

Schöck Isokor	b® T type K-U		M1	M2	M3	M4				
On-site	Location	Height	Concrete strength class ≥ C25/30							
reinforcement	LOCATION	[mm]		Downstand beam width ≥ 220 mm wall thickness ≥ 220 mm						
Pos. 1 overlap reinforceme	ent depending on	bar diame	eter							
Pos. 1 with Ø8 [mm²/m]			496	689	862	1170				
Pos. 1 with Ø10 [mm²/m]	Balcony side	Balcony side	160 - 250	532	743	915	1223			
Pos. 1 with Ø12 [mm²/m]			567	796	968	1277				
Pos. 2 Steel bars along the insulation joint										
Pos. 2	balcony side/ downstand beam, wal	160 - 250	2 • 2 • H8							
Pos. 3 Vertical reinforceme	ent									
Pos. 3 [mm ² /m] minimum reinforcement	downstand beam, wall	160 - 250	≥ 640	≥ 960	≥ 1163	≥ 1400				
Pos. 3 structural element design	downstand beam, wall	160 - 250	Taking into account tl	he moments and shea	r forces provided by th	ne structural engineer				
Pos. 4 Steel bars along the	insulation joint									
Pos. 4	downstand beam, wal	160 - 250	≥ 1 Ø 12							
Pos. 5 splitting tension rei	nforcement									
Pos. 5 [mm²/m]	downstand beam, wal	160 - 250		1	30					

Information about on-site reinforcement

- The mixing of steel bar and wire mesh reinforcement is possible. The corresponding mesh reinforcement can be taken into account when determining the additional reinforcement.
- When reinforcing with different diameters the reinforcement specification for the largest diameter is relevant.
- The minimum reinforcement of Pos. 3 serves for the transfer of the active bar axial forces from the lsokorb[®]. This minimum reinforcement must be complied with.

The required reinforcement from the structural element design as a result of the loading of the balcony, floors, walls and the supporting width of the downstand/upstand beam is to be verified by the structural engineer. The reinforcement determined from this must be compared with the minimum reinforcement of Pos, 3.

The greater of the two values is relevant.

- Isokorb[®] height for CV30 and CV35: H = 160 190 mm for downstand beam width w_{min} < 200mm</p>
 - H = 160 210 mm downstand beam width w_{min} < 220mm
 - H = 160 230 mm downstand beam width w_{min} < 240mm
- The required lateral reinforcement in the overlap area is to be verified according to BS EN 1992-1-1 (EC2), 8.7 to 8.8 and BS EN 1992-1-1/NA, NDPs nd NCIs to 8.7 and 8.8.
- ▶ l_0 for l_0 (Ø10) ≥ 570 mm, l_0 for l_0 (Ø12) ≥ 680 mm, l_0 (Ø14) ≥ 790 mm nd l_0 (Ø16) ≥ 910 mm.
- Further reinforcement values for concrete strength class C20/25 under www.schoeck.co.uk/downloads
- With the selection of the Isokorb[®] type channels and inclinations must be taken into account, in order to maintain the required concrete cover.
- For the safe transmisson of forces the instructions with regard to construction joints are to be observed, see page91.
- The indicative minimum concrete strength class of the external structural component is C32/40.

🛕 Hazard warning - missing connection bar

For the given load-bearing capacity, the transverse reinforcement bar is absolutely necessary. This transverse reinforcement bar must be fitted directly to the anchor head.

Reinforced concrete – reinforced concrete

🚺 Design example

 Example for the stirrup design (Pos. 3 + 5): Geometry: Isokorb® height H = 200 mm downstand beam width w_{exist} = 220 mm concrete cover CV30 concrete strength: C25/30 internal forces from balcony: _{Ed} = 45.3 kNm/m v_{Ed} = 35.0 kN/m

selected: T type K-U-M3-V1-REI120-CV35-LR180-X80-H200-7.0

Minimum reinforcement for Pos. 3: $a_{s,min} = 1163 \text{ mm}^2/\text{m}$ Required reinforcement from structural element design: $a_{s,req} = 528 \text{ mm}^2/\text{m} < 1163 \text{ mm}^2/\text{m} = a_{s,min}$

 \Rightarrow The minimum reinforcement $a_{s,min} = 1163 \text{ mm}^2/\text{m}$ is relevant!

Required splitting tensile reinforcement Pos. 5: $a_{s,req} = 130 \text{ mm}^2/\text{m}$

 \Rightarrow Required stirrup cross-section: $a_{s,req} = 1163 \text{ mm}^2/\text{m} + 130 \text{ mm}^2/\text{m} = 1293 \text{ mm}^2/\text{m}$

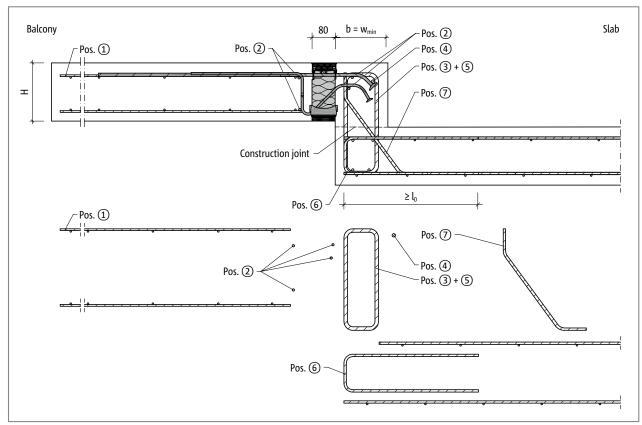


Fig. 109: Schöck Isokorb[®] T type K-O: On-site reinforcement for balcony with height offset upwards with minimum structural element dimension (wexist= wmin)

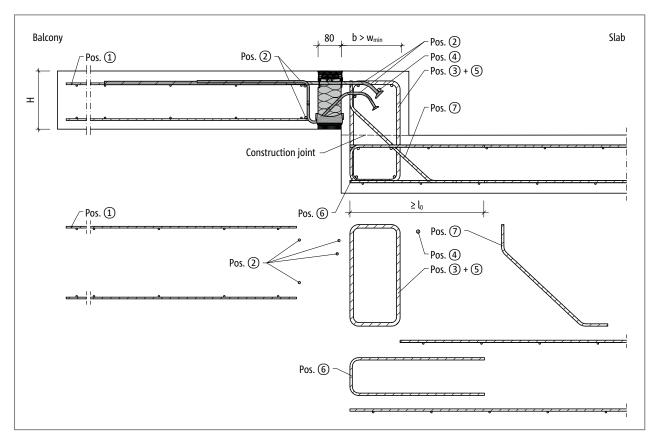


Fig. 110: Schöck Isokorb® T type K-O: On-site reinforcement for balcony with height offset upwards with larger structural element dimension (wexist= w_min)

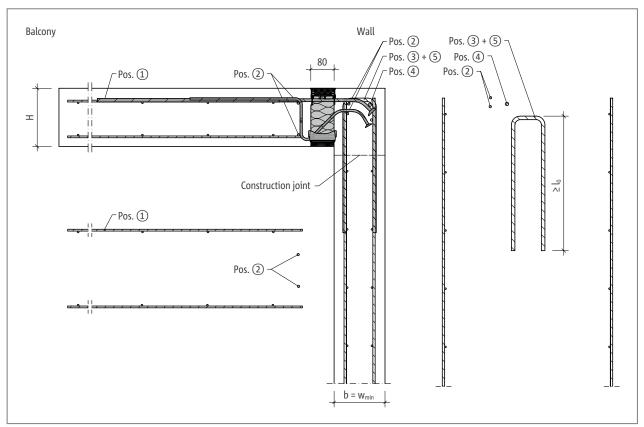


Fig. 111: Schöck Isokorb® T type K-O: On-site reinforcement for wall connection downwards with minimum structural element dimension (w_{exist}= w_{min})

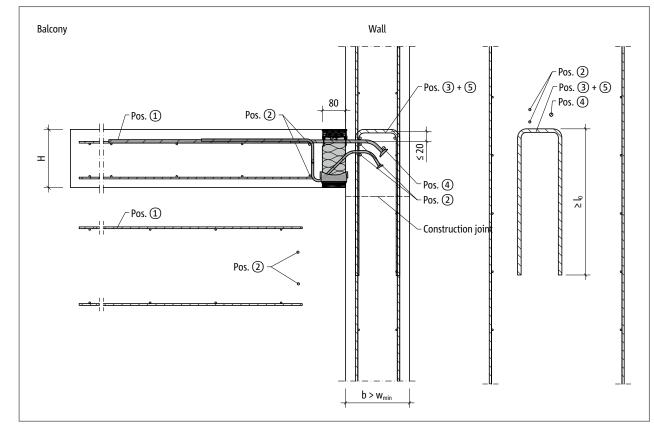


Fig. 112: Schöck Isokorb® T type K-O: On-site reinforcement for wall connection with larger structural element dimension (wexist= wmin)

Recommendation for on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; variants adapted to load-bearing level. The required reinforcement cross-section depends on the bar diameter of the steel bar or wire mesh reinforcement.

Schöck Isoko	rb® T ype K-O		M1	M2	M3	M4				
On-site reinforcement	Location	Height [mm]		Downstand beam	th class ≥ C25/30 1 width ≥ 175 mm ss ≥ 175 mm					
Pos. 1 overlap reinforceme	ent depending on	bar diame	eter							
Pos. 1 with Ø8 [mm ² /m]			496	689	862	1170				
Pos. 1 with Ø10 [mm²/m]	Balcony side	160 - 250	532	743	915	1223				
Pos. 1 with Ø12 [mm²/m]	-		567	796	968	1277				
Pos. 2 Steel bars along the	insulation joint									
Pos. 2	balcony side/ downstand beam, wall	160 - 250	2 · 2 · H8							
Pos. 3 Vertical reinforceme	Pos. 3 Vertical reinforcement									
Pos. 3 [mm ² /m] minimum reinforcement	downstand beam, wall	160 - 250	≥ 640	≥ 960	≥ 1163	≥ 1400				
Pos. 3 structural element design	downstand beam, wall	160 - 250	Taking into account th	he moments and shea	r forces provided by t	he structural engineer				
Pos. 4 Steel bars along the	insulation joint									
Pos. 4	downstand beam, wall	160 - 250		≥19	Ø 12					
Pos. 5 splitting tension rei	nforcement									
Pos. 5 [mm²/m]	downstand beam, wall	160 - 250	130							
Pos.6 Slip in bracket										
Pos. 6	Floor side	160 - 250	acc. to the specifications of the structural engineer							
Pos. 7 Slanting reinforcem	ent									
Pos.7	Downstand beam	160 - 250	acc	. to the specifications	of the structural engir	neer				

Information about on-site reinforcement

▶ Information on the on-site reinforcement see page 90.

The indicative minimum concrete strength class of the external structural component is C32/40.

🛕 Hazard warning - missing connection bar

For the given load-bearing capacity, the transverse reinforcement bar is absolutely necessary. This transverse reinforcement bar must be fitted directly to the anchor head.

T X V V V V V V

Information about on-site reinforcement

- The mixing of steel bar and wire mesh reinforcement is possible. The corresponding mesh reinforcement can be taken into account when determining the additional reinforcement.
- When reinforcing with different diameters the reinforcement specification for the largest diameter is relevant.
- The minimum reinforcement of Pos. 3 serves for the transfer of the active bar axial forces from the Isokorb[®]. This minimum reinforcement must be complied with.

The required reinforcement from the structural element design as a result of the loading of the balcony, floors, walls and the supporting width of the downstand/upstand beam is to be verified by the structural engineer. The reinforcement determined from this must be compared with the minimum reinforcement of Pos, 3.

The greater of the two values is relevant.

- ▶ Isokorb[®] height for CV30 and CV35: H = 160 210 mm for downstand beam width w_{min} < 190mm
 - H = 160 230 mm for downstand beam width w_{min} < 210mm
- Pos. 3 and Pos. 5 are to be brought as close as possible over the tension bar of the Schöck Isokorb[®]. The distance between the on-site stirrup reinforcement and the upper edge of the tension bar is smaller than 2 cm.
- The required lateral reinforcement in the overlap area is to be verified according to BS EN 1992-1-1 (EC2), 8.7 to 8.8 and BS EN 1992-1-1/NA, NDPs nd NCIs to 8.7 and 8.8.
- ▶ l_0 for l_0 (Ø10) ≥ 570 mm, l_0 for l_0 (Ø12) ≥ 680 mm, l_0 (Ø14) ≥ 790 mm nd l_0 (Ø16) ≥ 910 mm.
- Further reinforcement values for concrete strength class C20/25 under www.schoeck.co.uk/downloads
- With the selection of the Isokorb[®] type channels and inclinations must be taken into account, in order to maintain the required concrete cover.
- For the safe transmisson of forces the instructions with regard to construction joints are to be observed, see page91.
- The indicative minimum concrete strength class of the external structural component is C32/40.

🛕 Hazard warning - missing connection bar

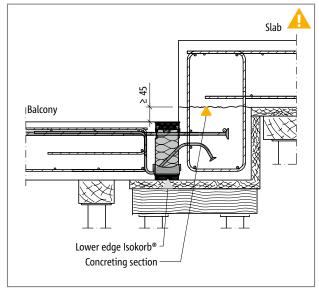
For the given load-bearing capacity, the transverse reinforcement bar is absolutely necessary. This transverse reinforcement bar must be fitted directly to the anchor head.

Design example

Numerical example for stirrup design (Pos. 3 + 5):							
Geometry: Isokorb® height H = 230 mm							
downstand beam width w _{exist} = 175 mm							
concrete cover in the downstand beam CV30							
concrete strength:	C25/30						
internal forces from balco	ny: m _{Ed} = -6.92 kNm/mv						
_{Ed} = 21.6 kN/m							

selected: T type K-O-M4-V1-REI120-CV50-LR145-X80-H230-7.0

minimum reinforcement for Pos. 3: $a_{s,min} = 1400 \text{ mm}^2/\text{m}$ required reinforcement from structural element design $a_{s,req} = 1446 \text{ mm}^2/\text{m} > 1400 \text{ mm}^2/\text{m} = a_{s,min}$


 \Rightarrow The required reinforcement from beding design $a_{s,req} = 1446 \text{ mm}^2/\text{m}$ is relevant!

Required splitting tensile reinforcement Pos. 5: $a_{s,req} = 130 \text{ mm}^2/\text{m}$

 \Rightarrow required stirrup cross-section: $a_{s,req} = 1446 \text{ mm}^2/\text{m} + 130 \text{ mm}^2/\text{m} = 1576 \text{ mm}^2/\text{m}$

Tight fit/Concreting section | Installation instructions

Tight fit/Concreting section

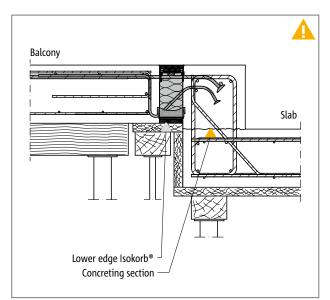


Fig. 113: Schöck Isokorb® T type K-U: Cast-in-place concrete balcony with height offset downwards

Fig. 114: Schöck Isokorb® T type K-O: Cast-in-place concrete balcony with height offset upwards

A Hazard note: Tight fit with different height levels

The tight fit of the pressure bearings to the freshly poured concrete is to be ensured, therefore the upper edge of the masonry respectively of the concreting section is to be arranged below the lower edge of the Schöck Isokorb[®]. This is to be taken into account above all with a different height level between inner slab and balcony.

- ▶ The concreting joint and the upper edge of the masonry are to be arranged below the lower edge of the Schöck Isokorb®.
- > The position of the concreting section is to be indicated in the formwork and reinforcement drawing.
- ▶ The joint planning is to be coordinated between precast concrete plant and construction site.


Installation manual

▶ Installation manual see Technical Information Schöck Isokorb® XT for reinforced concrete structures.

🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- Has the additional proportionate deflection resulting from the Schöck Isokorb[®] been taken into account?
- □ Is the drainage direction taken into account with the resulting camber information? Is the degree of camber entered in the working drawings?
- □ Is the increased minimum slab thickness taken into account with CV50?
- Are the recommendations for the limitation of the slenderness observed?
- Are the maximum allowable expansion joint spacings taken into account?
- Are the Schöck FEM guidelines taken into account with the calculation using FEM?
- With the selection of the design table is the relevant concrete cover taken into account?
- Have existing horizontal loads e.g. from wind pressure been taken into account as planned? Are additional Schöck Isokorb® T type H required for this?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Is the required component geometry present with the connection to a floor or a wall? Is a special design required?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- With precast balconies are possibly necessary gaps for the front side transportation anchors and downpipes with internal drainage taken into account? Is the maximum centre distance of 300 mm for the Isokorb[®] bars observed?

Schöck Isokorb® T type Q

Schöck Isokorb[®] T type Q Suitable for supported balconies. It transfers positive shear forces.

Schöck Isokorb[®] T type Q-VV Suitable for supported balconies. It transfers positive and negative shear forces.

Schöck Isokorb® T type Q-Z

Suitable for supported balconies with connection free of constraint forces. It transfers positive shear forces.

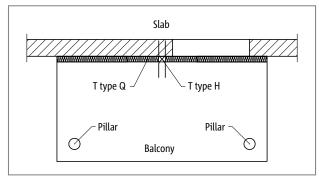


Fig. 115: Schöck Isokorb® type Q: Balcony with pillar support

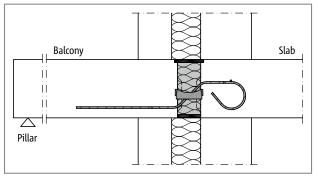
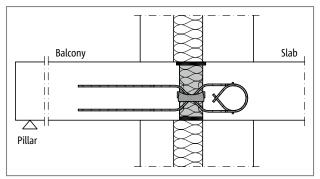
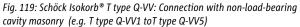




Fig. 117: Schöck Isokorb® T type Q: Connection with non-load-bearing cavity masonry (e.g. T type Q-V1 to T type Q-V5)

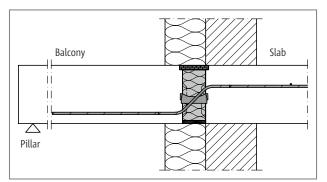


Fig. 121: Schöck Isokorb® T type Q: Connection with thermal insulation composite system (TICS) (e.g. T type Q-V6 to T Typ Q-V10)

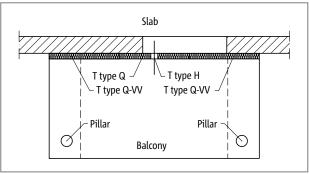


Fig. 116: Schöck Isokorb® T type Q, Q-VV: Supported balcony with various bearing stiffnesses; T type H (optional) with ordinary horizontal forcet

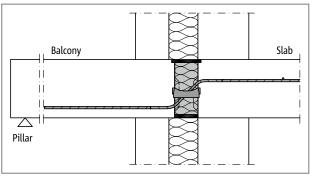
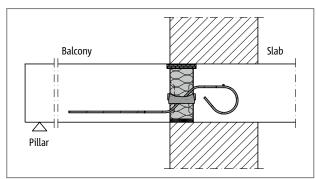
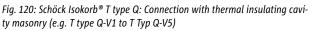




Fig. 118: Schöck Isokorb® T type Q: Connection with non-load-bearing cavity masonry (e.g. T type Q-V6 to T type Q-V10)

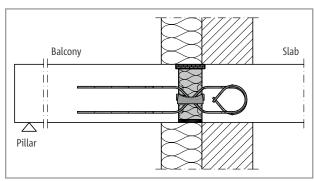


Fig. 122: Schöck Isokorb® T type Q-VV: Connection with thermal insulation composite system (TICS) (e.g. T type Q-VV1 to T Typ Q-VV5)

Installation cross sections

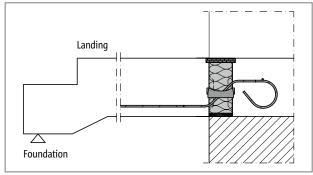


Fig. 123: Schöck Isokorb® T type Q: Connection stair flight with thermal insulating cavity masonry (e.g. T type Q-V1 to T Typ Q-V5)

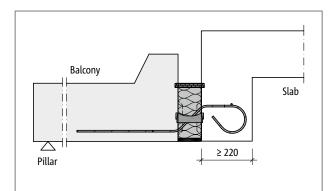


Fig. 125: Schöck Isokorb® T type Q: Installation situation "pre-cast balcony slab" (e.g. T type Q-V1 to Q-V5)

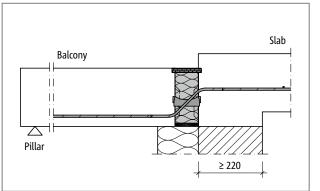


Fig. 127: Schöck Isokorb® T type Q: Installation situation with small height offset (e.g. T type Q-V6 to Q-V10)

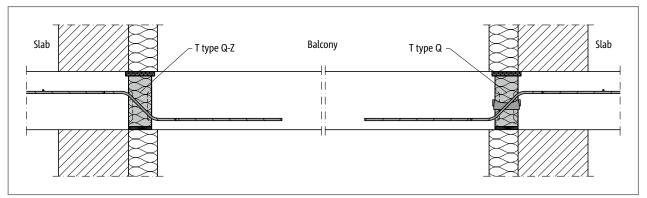


Fig. 128: Schöck Isokorb® T type Q-Z, Q: Application case one-way reinforced concrete slab

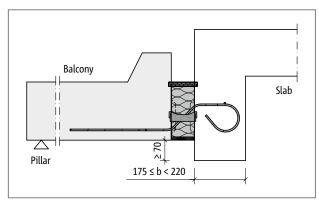


Fig. 124: Schöck Isokorb® T type Q: Installation situation "pre-cast balcony slab" (e.g. T type Q-V1 to Q-V5)

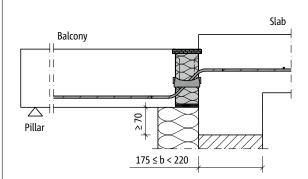


Fig. 126: Schöck Isokorb® T type Q: Installation situation with small height offset (e.g. T type Q-V6 to Q-V10)

T type Q

Product selection | Type designations | Special designs

Schöck Isokorb® T type Q, Q-VV, Q-Z variants

The configuration of the Schöck Isokorb® T types Q and Q-VV can be varied as follows:

T type Q: Shear force bar for positive shear force

T type Q-VV: Shear force bar for positive and negative shear force

T type Q-Z: Free of constraint forces without pressure bearing. shear force bar for positive shear force

Main load capacity:

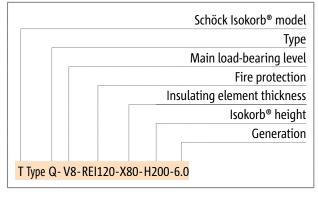
V1 to V10

VV1 to VV10

main load capacities V1 to V5: Shear force bar, floor side bent, balcony side straight

Main load-bearing level V6 to V10: Shear force bar on floor side straight, on balcony side straight

Fire resistance class:


REI120 (standard): Projection upper fire protection board, both sides 10 mm

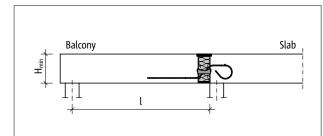
Concrete cover of the shear force bars: bottom: CV ≥ 30 mm

top: $CV \ge 24$ mm (depending on height of the shear force bars)

- Insulating element thickness:
- X80 = 80 mm
- Isokorb[®] height:
- H = H_{min} up to 250 mm (note minimum slab height depending on load bearing capacity and fire protection)
- Generation:
 - 6.0

Type designations in planning documents

🤨 Special designs


Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

In accordance with approval heights up to 500 mm are possible.

This also applies with additional requirements as a result of precast concrete construction. For additional requirements determined by manufacturing or transportation there are solutions available with coupler bars.

C25/30 design

Schöck Isokorb® T type Q	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
Design values with					V _{Rd,z} [k	(N/m]				
Concrete C25/30	34.8	43.5	52.2	69.5	86.9	92.5	112.1	134.5	173.9	208.6
								^		
Isokorb® length [mm]	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Shear force bars	4Ø6	5Ø6	6Ø6	8Ø6	10 Ø 6	6Ø8	5ø10	6ø10	5ø12	6Ø12
Pressure bearing (piece)	4	4	4	4	4	4	4	4	6	6
H _{min} width REI120 [mm]	160	160	160	160	160	170	180	180	190	190

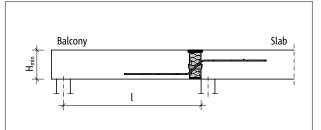
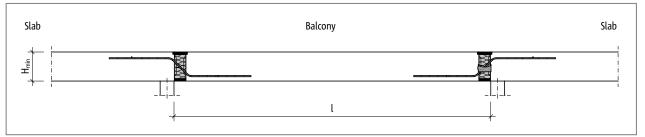


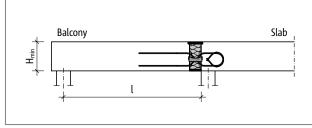
Fig. 129: Schöck Isokorb® T type Q: Static system (T type Q-V1 to Q-V5)

Fig. 130: Schöck Isokorb® T type Q: Static system (T type Q-V6 to Q-V10)

Schöck Isokorb [®] T type Q-Z	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
Design values with	v _{rd,z} [kN/m]									
Concrete C25/30	34.8	43.5	52.2	69.5	86.9	92.5	112.1	134.5	173.9	208.6

	5									
Isokorb [®] length [mm]	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Shear force bars	4Ø6	5Ø6	6Ø6	8Ø6	10 Ø 6	6Ø8	5ø10	6Ø10	5ø12	6 Ø 12
Pressure bearing (piece)	-	-	-	-	-	-	-	-	-	-
H _{min} width REI120 [mm]	160	160	160	160	160	170	180	180	190	190




Fig. 131: Schöck Isokorb® T type Q-Z, Q: Static system (T type Q-Z-V6 to Q-Z-10, Q-V6 to Q-V10)

C25/30 design

Schöck Isokorb® T type Q	VV1	VV2	VV3	VV4	VV5				
Design values with		v _{Rd,z} [kN/m]							
Concrete C25/30	±34.8	±43.5	±52.2	±69.5	±86.9				
Isokorb® length [mm]	1000	1000	1000	1000	1000				
Shear force bars	2 × 4 Ø 6	2 × 5 Ø 6	2 × 6 Ø 6	2 × 8 Ø 6	2 × 10 Ø 6				
Pressure bearing (piece)	4	4	4	4	4				
H _{min} width REI120 [mm]	160	160	160	160	160				

Schöck Isokorb® T type Q	VV6	VV7	VV8	VV9	VV10
Design values with			v _{Rd,z} [kN/m]		
Concrete C25/30	±92.5	±112.1	±134.5	±173.9	±208.6

Isokorb® length [mm]	1000	1000	1000	1000	1000
Shear force bars	2 × 6 Ø 8	2 × 5 Ø 10	2 × 6 Ø 10	2 × 5 Ø 12	2 × 6 Ø 12
Pressure bearing (piece)	4	4	4	6	6
H _{min} width REI120 [mm]	170	180	180	200	200

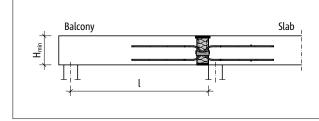
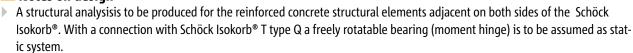



Fig. 133: Schöck Isokorb[®] T type Q-VV: Static system (T type Q-VV6 to

Fig. 132: Schöck Isokorb® T type Q-VV: Static system (T type Q-VV1 to Q-VV5)

Notes on design

Q-VV10)

- For the transfer of ordinary horizontal forces additional Schöck Isokorb[®] type H (see page 125) are required.
- With horizontal tension forces at right angles to the outer wall, which are greater than the existing shear forces, the Schöck Isokorb[®] type H is additionally to be arranged punctually.
- Due to the excentric force application of the Schöck Isokorb[®] type Q and type Q-VV an offset moment is generated at the adjacent slab edges. This is to be taken into account with the design of the slabs.
- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- The indicative minimum concrete strength class of the external structural component is C32/40.

Moments from excentric connection

Moments resulting from excentric connection

Moments from excentric connection are to be taken into account for the design of the connection reinforcement on both sides of the shear force transferring Schöck Isokorb® T types Q and Q-VV. These moments are respectively to be overlaid with the moments from the ordinary loading, if they have the same sign.

The following table values ΔM_{Ed} have been calculated for 100% utilisation of v_{Rd}

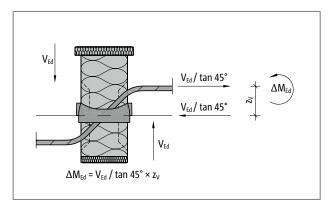


Fig. 134: Schöck Isokorb® T type Q: Moments resulting from eccentric connection

Schöck Isokorb® T type Q	V1, VV1	V2, VV2	V3, VV3	V4, VV4	V5, VV5			
Design values with	Δ M _{Ed} [kNm/Element]							
Concrete C25/30	1.5	1.9	2.3	3.1	3.8			

Schöck Isokorb® T type Q	V6, VV6	V7, VV7	V8, VV8	V9, VV9	V10, VV10			
Design values with	Δ M _{Ed} [kNm/Element]							
Concrete C25/30	4.4	5.8	7.0	10.1	12.1			

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component exceeds the maximum expansion joint spacing e, then expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. For fixed points such as corners of balconies, parapets and balustrades or when using the Schöck Isokorb[®] T type H, half the maximum expansion joint spacing e/2 applies out from the fixed point.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

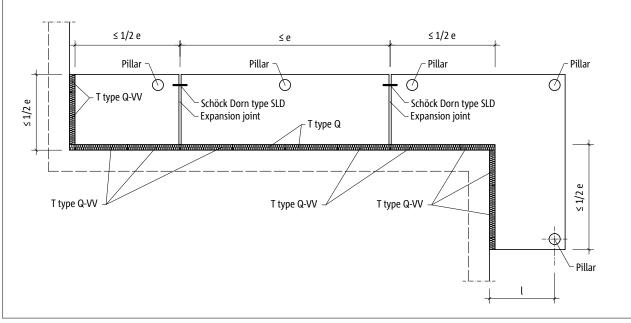


Fig. 135: Schöck Isokorb® T type Q, Q-VV: Expansion joint layout

Schöck Isokorb® T type Q, Q-Z		V1 - V6 VV1 - VV6	V7 - V8 VV7 - VV8	V9 - V10 VV9 - VV10		
Maximum expansion joint spacing	ng		e [m]			
Insulating element thickness [mm]	80	13.5	13.0	11.7		

Edge distances

The Schöck Isokorb® must be so arranged at the expansion joint that the following conditions are met:

For the centre distance of the compression elements from the free edge or from the expansion joint: $e_R \ge 50$ mm applies.

For the centre distance of the shear force bars from the free edge or from the expansion joint: $e_R \ge 100$ mm and $e_R \le 150$ mm applies.

Product description

Fig. 136: Schöck Isokorb® T type Q-V1 to Q-V5: Product section

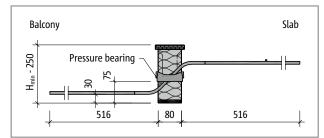


Fig. 138: Schöck Isokorb® T type Q-V7 for Q-V8: Product section

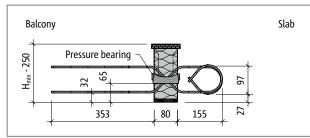


Fig. 140: Schöck Isokorb® T type Q-VV1 up to Q-VV5: Product section

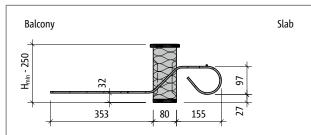


Fig. 142: Schöck Isokorb® T type Q-Z-V1 to Q-Z-V5: Product section

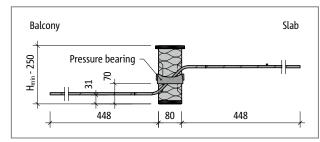


Fig. 137: Schöck Isokorb® T type Q-V6: Product section

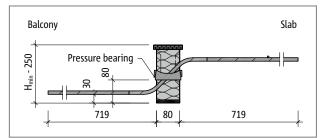


Fig. 139: Schöck Isokorb® T type Q-V9 for Q-V10: Product section

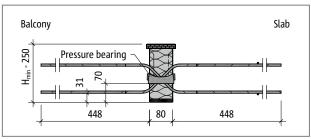


Fig. 141: Schöck Isokorb® T type Q-VV6: Product section

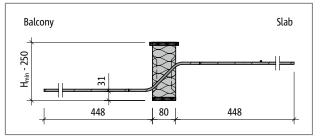
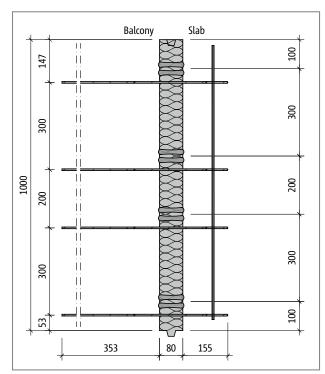



Fig. 143: Schöck Isokorb® T type Q-Z-V6: Product section

Product description

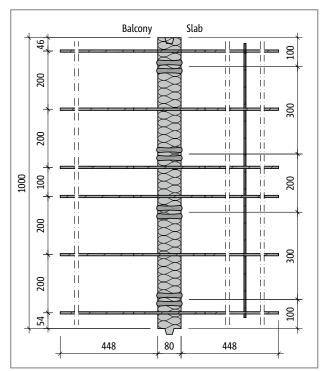


Fig. 144: Schöck Isokorb® T type Q-V1: Product layout

Fig. 145: Schöck Isokorb® T type Q-V6: Product layout

Product information

- Download further product plan views and cross-sections at www.schoeck.co.uk/download
- Note min. height H_{min} Schöck Isokorb® T type Q, Q-VV, Q-Z.

On-site reinforcement

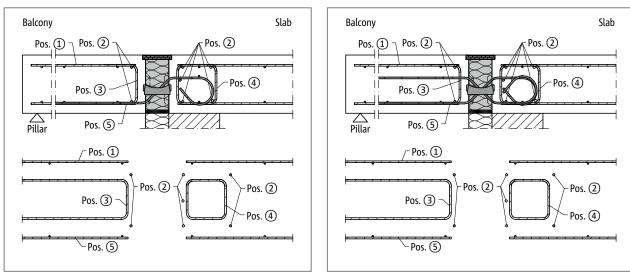
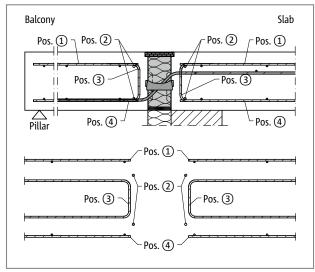


Fig. 146: Schöck Isokorb® T type Q-V1 up to Q-V5: On-site reinforcement

Fig. 147: Schöck Isokorb® T type Q-VV1 up to Q-VV5: On-site reinforcement

The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

In addition, it is to be ensured that the shear force bars of the Schöck Isokorb® are 100% lapped, insofar as they lie in the tension zone.


Schöck Isokorb® T type Q, Q-Z		V1, VV1	V2, VV2	V3, VV3	V4, VV4	V5, VV5				
On-site reinforcement	Location	Concrete strength class ≥ C25/30								
Pos. 1 Lapping reinforcement										
Pos. 1	Balcony side	acc. to the specifications of the structural engineer								
Pos. 2 Steel bars along the insulation joint										
Pos. 2	Balcony side	2 • H8	2 • H8	2 • H8	2 • H8	2 • H8				
Pos. 2	Floor side	5 • H8	5 • H8	5 • H8	5 • H8	5 • H8				
Pos. 3 Stirrup										
Pos. 3 [mm²/m]	Balcony side	80	100	120	160	200				
Pos. 4 Closed stirrup (edge beam according to Z-15.7-240)										
Pos. 4 [mm²/m]	Floor side	141	141	141	141	141				
Pos. 4	Floor side	H8@200	H8@200	H8@200	H8@200	H8@200				
Pos. 5 Lapping reinforcement										
Pos. 5	Balcony side	necessary in the tension zone, as specified by the structural engineer								
Pos. 6 Side reinforcement at the free edge										
Pos. 6		Edging as per BS EN 1992-1-1 (EC2), 9.3.1.4 (not pictured)								

Information about on-site reinforcement

- Lapping of the reinforcement in the connecting reinforced concrete components must be applied as close as possible to the insulating element of the Schöck Isokorb[®], the required concrete cover must be observed.
- The shear force bars are to be anchored with their straight ends in the pressure zone. In the tension zone the shear force bars are to be lapped.
- The side reinforcement Pos. 6 should be selected as low as possible so that it can be arranged between top and bottom reinforcement position.
- The indicative minimum concrete strength class of the external structural component is C32/40.

type Q

On-site reinforcement

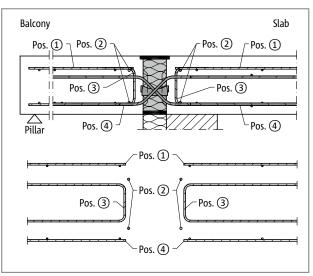
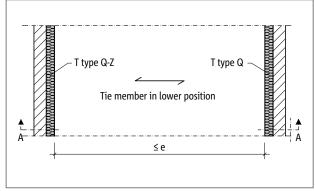


Fig. 148: Schöck Isokorb® T type Q-V6 up to Q-V10: On-site reinforcement

Fig. 149: Schöck Isokorb® T type Q-VV6 up to Q-VV10: On-site reinforcement


The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

In addition, it is to be ensured that the shear force bars of the Schöck Isokorb® are 100% lapped, insofar as they lie in the tension zone.

Schöck Isokorb® T type Q, Q-Z		V6, VV6	V6 V7, VV7 V8,		V9, VV9	V10, VV10			
On-site reinforcement	Location	Concrete strength class ≥ C25/30							
Pos. 1 Lapping reinforcement									
Pos. 1	Balcony/floor side	acc. to the specifications of the structural engineer							
Pos. 2 Steel bars along the insulation joint									
Pos. 2	Balcony/floor side	2 × 2 Ø 8	2 × 2 Ø 8	2 × 2 Ø 8	2 × 2 Ø 8	2 × 2 Ø 8			
Pos. 3 Stirrup									
Pos. 3 [mm²/m]	Balcony/floor side	213	258	309	400	480			
Pos. 4 Lapping reinforcement									
Pos. 4	Balcony/floor side	necessary in the tension zone, as specified by the structural engineer							
Pos. 5 Side reinforcement at the free edge									
Pos. 5		Edging as per BS EN 1992-1-1 (EC2), 9.3.1.4 (not pictured)							

Information about on-site reinforcement

- Lapping of the reinforcement in the connecting reinforced concrete components must be applied as close as possible to the insulating element of the Schöck Isokorb[®], the required concrete cover must be observed.
- The shear force bars are to be anchored with their straight ends in the pressure zone. In the tension zone the shear force bars are to be lapped.
- The side reinforcement Pos. 5 should be selected so low that it can be arranged between the upper and lower reinforcement position.
- The indicative minimum concrete strength class of the external structural component is C32/40.

Application example reinforced concrete slab spanning in one direction

Fig. 150: Schöck Isokorb® T type Q-Z, Q: One-way reinforced reinforced concrete slab

A T type Q-Z without pressure bearing is to be arranged on one side for support free of constraint forces. A T type Q with pressure bearing is then required on the opposite side. In order to maintain the balance of forces a tie bar, which laps with the shear force transferring Isokorb[®] bars, is to reinforce between T type Q-Z and T type Q.

Expansion joints

Expansion joint spacing e see p. 101

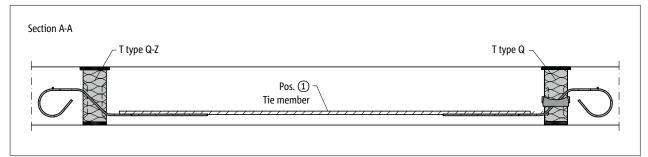
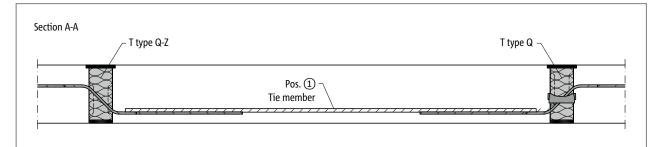
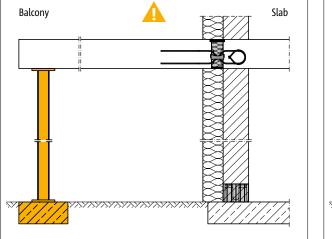


Fig. 151: Schöck Isokorb® T type Q-Z-V1 to Q-Z-V5, Q-V1 to Q-V5: Section A-A; One-way reinforced concrete slab




Fig. 152: Schöck Isokorb® T type Q-Z-V6 to Q-Z-V10, Q-V6 to Q-V10: Section A-A; One-way reinforced concrete slab

Schöck Isokorb® T type Q, Q-Z	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
On-site reinforcement	Concrete strength class ≥ C25/30									
Pos. 1 Tie										
Pos. 1	4 • H8	5 • H8	6•H8	8 • H8	10•H8	6•H8	5•H10	6•H10	5•H12	6•H12

Information about on-site reinforcement

▶ The required suspension reinforcement and the on-site slab reinforcement are not shown here.

> On-site reinforcement analogue to Schöck Isokorb® T type Q see p. 104

Type of bearing: supported | Installation instructions

Fig. 153: Schöck Isokorb[®] T type Q-VV: Support required at all times

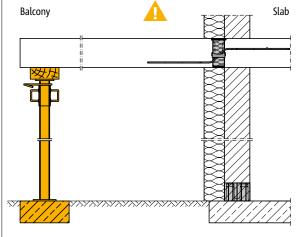


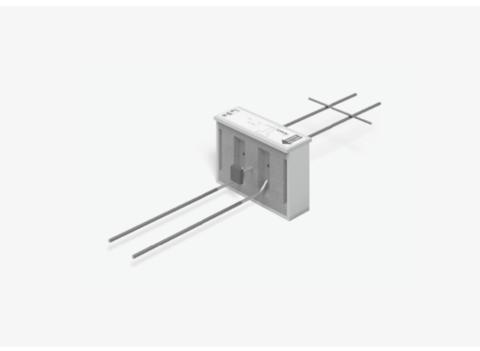
Fig. 154: Schöck Isokorb® T type Q: Support required at all times

Supported balcony

The Schöck Isokorb T type Q, Q-W and Q-Z is developed for supported balconies. It transfers exclusively shear forces, no bending moments.

\rm Marning - omitting the pillars

- The balcony will collapse if not supported.
- At all stages of construction, the balcony must be supported with statically suitable pillars or supports.
- Even when completed, the balcony must be supported with statically suitable pillars or supports.
- A removal of temporary support is permitted only after installation of the final support.


Installation manual

Installation manual see Technical Information Schöck Isokorb® XT for reinforced concrete structures.

🗹 Check list

- Has the right type of Schöck Isokorb[®] been selected for the static system? T Type Q is a connection purely for shear force (moment joint).
- Is the balcony so planned that a continuous support is ensured in all stages of construction and in the final status?
- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- Are the Schöck FEM guidelines taken into account with the calculation using FEM?
- With the selection of the design table is the relevant concrete cover taken into account?
- Is the minimum slab thickness taken into consideration with Schöck Isokorb® types in fire protection configuration?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- Are the maximum allowable expansion joint spacings taken into account?
- Is the required component geometry present with the connection to a floor or a wall? Is a special design required?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have existing horizontal loads e.g. from wind pressure been taken into account as planned? Are additional Schöck Isokorb® T type H required for this?
- With precast balconies are possibly necessary gaps for the front side transportation anchors and downpipes with internal drainage taken into account? Is the maximum centre distance of 300 mm for the Isokorb[®] bars observed?
- With 2- or 3-sided support has a Schöck Isokorb[®] (possibly T type Q-Z, T type Q-PZ) been selected for a connection free of constraint forces?

Schöck Isokorb® T type Q-P

Schöck Isokorb® T type Q-P (shear force)

Suitable for load peaks with supported balconies. It transfers positive shear forces.

Schöck Isokorb® T type Q-P-VV (shear force)

Suitable for load peaks with supported balconies. It transfers positive and negative shear forces.

Schöck Isokorb® T type Q-PZ (shear force free of restraint)

Suitable for peak loads with supported balconies. It transfers positive shear forces.

Element arrangement

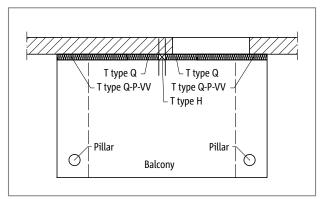


Fig. 155: Schöck Isokorb® T type Q-P-VV, Q: balcony with pillar support, connection with various bearing stiffnesses; optionally with T type H for the transfer of ordinary horizontal force

Fig. 157: Schöck Isokorb® T type Q-VV, Q-P,, Q-Z Recessed balcony supported on three sides with tie member

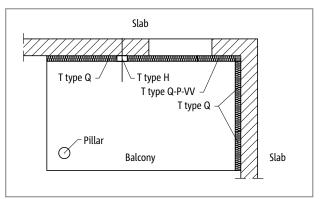


Fig. 156: Schöck Isokorb[®] T type Q, Q-P-VV: Balcony supported on two sides with pillar and positive shear forces

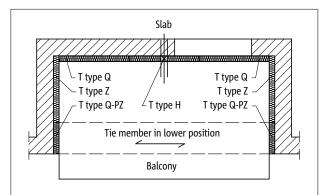


Fig. 158: Schöck Isokorb® T type Q, Q-PZ: Recessed balcony supported on three sides - symmetric with tie member

Installation cross sections

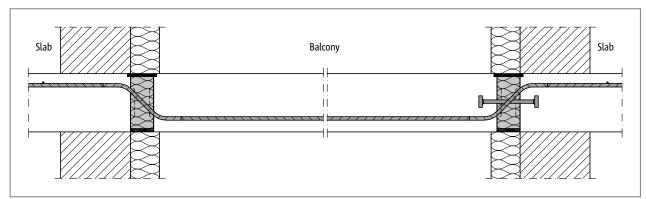


Fig. 159: Schöck Isokorb® T type Q-PZ, Q-P: Recessed balcony application see also page 121

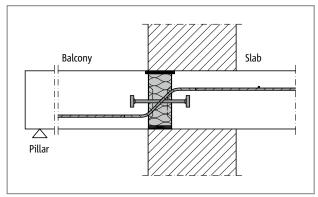


Fig. 160: Schöck Isokorb® T type Q-P: Connection of supported balcony with thermal insulating cavity wall

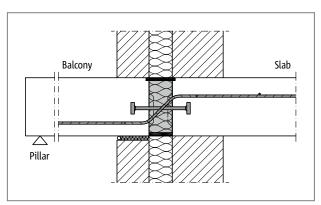


Fig. 161: Schöck Isokorb® T type Q-P: Connection supported balcony with thermal insulating cavity masonry

Product selection | Type designations | Special designs

Schöck Isokorb® T type Q-P, Q-P-VV, Q-PZ variants

The configuration of the Schöck Isokorb® types Q-P, Q-P-VV and Q-PZ can be varied as follows:

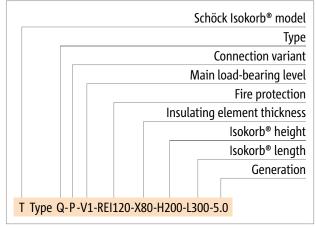
Shear force bar on floor side straight, on balcony side straight, applies for all bearing levels.

T type Q-P: Shear force bar for positive shear force

T type Q-P-VV: Shear force bar for positive and negative shear force

T type Q-PZ: Free of constriant forces without thrust bearing, shear force bar for positive shear force

- Connection variant: P Punctual
- Main bearing level: V1 to V9


VV1 to VV9

- Fire resistance class:
- REI120 (standard): Projection upper fire protection board, both sides 10 mm
- Concrete cover:
- bottom: $CV \ge 40 \text{ mm}$

top: $CV \ge 21 \text{ mm}$ (depending on height of the shear force bars)

- Insulating element thickness:
- X80 = 80 mm
- Isokorb[®] height:
 - $H = H_{min}$ up to 250 mm (note minimum slab height depending on load bearing capacity and fire protection)
- Isokorb®length:
 - L = 300 to 500 mm
- Generation:
 - 5.0

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

In accordance with approval heights up to 500 mm are possible.

This also applies with additional requirements as a result of precast concrete construction. For additional requirements determined by manufacturing or transportation there are solutions available with coupler bars.

C25/30 design

Schöck Isokorb® T type Q-P	V1	V2	V3	V4	V5	V6	V7	V8	V9
Design values with				V _{Rd,z}	[kN/elem	ent]			
Concrete C25/30	30.9	46.4	61.8	45.3	65.4	65.4	98.6	87.0	130.4
Isokorb® length [mm]	300	400	500	300	400	300	400	300	400
Shear force bars	2Ø8	3Ø8	4Ø8	2ø10	3ø10	2ø12	3ø12	2ø14	3ø14
Pressure bearing (piece)	1ø10	2 Ø 10	2 Ø 10	1ø12	2ø10	2ø10	2ø12	2ø12	3ø12
H _{min} width REI120 [mm]	180	180	180	190	190	200	200	210	210

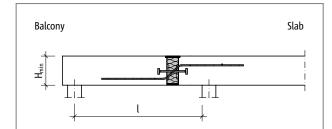


Fig. 162: Schöck Isokorb® T type Q-P: Static system

Schöck Isokorb® T type Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9
Design values with	V _{Rd,z} [kN/element]								
Concrete C25/30	30.9	46.4	61.8	45.3	65.4	65.4	98.6	87.0	130.4

Isokorb® length [mm]	300	400	500	300	400	300	400	300	400
Shear force bars	2ø8	3Ø8	4 Ø 8	2 Ø 10	3 Ø 10	2ø12	3 Ø 12	2 Ø 14	3 Ø 14
Pressure bearing (piece)	-	-	-	-	-	-	-	-	-
H _{min} width REI120 [mm]	180	180	180	190	190	200	200	210	210

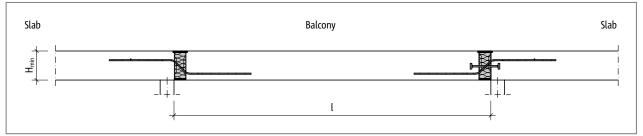


Fig. 163: Schöck Isokorb® T type Q-PZ, Q-P: Static system

C25/30 design

Schöck Isokorb® T type Q-P	VV1	VV2	VV3	VV4
Design values with		V _{Rd,z} [kN	/element]	
Concrete C25/30	±30.9	±46.4	±61.8	±45.3
Isokorb® length [mm]	300	400	500	300
Shear force bars	2 × 2 Ø 8	2 × 3 Ø 8	2 × 4 Ø 8	2 × 2 Ø 10
Pressure bearing (piece)	1 Ø 10	2 Ø 10	2 Ø 10	1 Ø 12
H _{min} width REI120 [mm]	180	180	180	190

Schöck Isokorb® T type Q-P	VV5	VV6	VV7	VV8	VV9			
Design values with	V _{Rd,z} [kN/element]							
Concrete C25/30	±65.4	±65.4	±98.6	±87.0	±130.4			

Isokorb® length [mm]	400	300	400	300	400
Shear force bars	2 × 3 Ø 10	2 × 2 Ø 12	2 × 3 Ø 12	2 × 2 Ø 14	2 × 3 Ø 14
Pressure bearing (piece)	2 Ø 10	2 Ø 10	2 Ø 12	2 Ø 12	3 Ø 12
H _{min} width REI120 [mm]	190	200	200	220	220

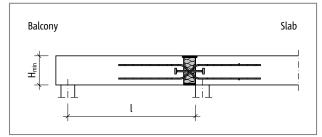


Fig. 164: Schöck Isokorb® T type Q-P-VV: Static system

Notes on design

- For the transfer of ordinary horizontal forces additional Schöck Isokorb[®] type H (see page 125) are required.
- A structural calculation is to be produced for the reinforced concrete structural elements adjacent on both sides of the Schöck Isokorb[®]. With a connection using Schöck Isokorb[®] type QP and type QP+VV a freely rotatable support (pin connection is to be assumed as static system.
- The Schöck Isokorb[®] type Q-PZ for connection free of constraint forces requires a reinforced tie bar in the lower position. Select A_{s,req} according to application example recessed balcony page 121.
- The indicative minimum concrete strength class of the external structural component is C32/40.
- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].

Reinforced concrete – reinforced concrete

Moments from excentric connection

Moments resulting from excentric connection

Moments from excentric connection are to be taken into account for the design of the connection reinforcement on both sides of the shear force transferring Schöck Isokorb[®] types Q and Q-P-VV. These moments are respectively to be overlaid with the moments from the ordinary loading, if they have the same sign.

The following table values ΔM_{Ed} have been calculated for 100% utilisation of V_{Rd} with a lever arm of $z_{v,max}$ = 140 mm.

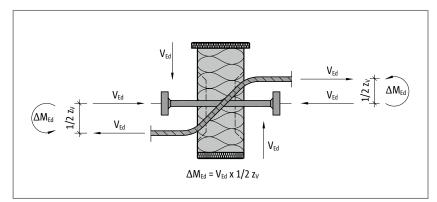


Fig. 165: Schöck Isokorb® T type Q-P: Moments resulting from excentric connection

Schöck Isokorb® T type Q-P	V1, VV1	V2, VV2	V3, VV3	V4, VV4	V5, VV5				
Design values with	Δ M _{Ed} [kNm/Element]								
Concrete C25/30	1.3	2.0	2.6	2.2	3.1				

Schöck Isokorb® T type Q-P	V6, VV6	V7, VV7	V8, VV8	V9, VV9						
Design values with		Δ M _{Ed} [kNm/Element]								
Concrete C25/30	3.6	5.5	5.5	8.2						

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component exceeds the maximum expansion joint spacing e, then expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. For fixed points such as corners of balconies, parapets and balustrades or when using the Schöck Isokorb[®] T type H, half the maximum expansion joint spacing e/2 applies out from the fixed point.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

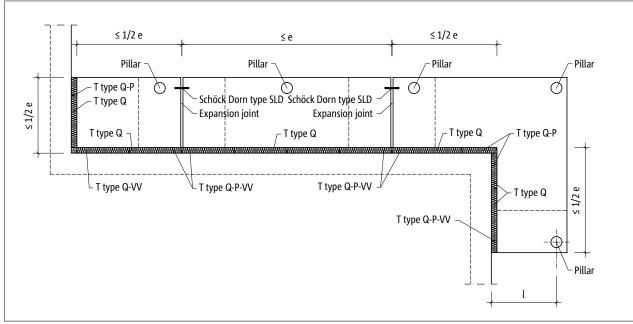


Fig. 166: Schöck Isokorb® T type Q-P, Q-P-VV: Expansion joint layout

Schöck Isokorb® T type Q-P	V1, VV1	V2, VV2	V3, VV3	V4, VV4	V5, VV5				
Maximum expansion joint spacir	ıg		e [m]						
Insulating element thickness [mm]	80	11.0	11.0	11.0	10.6	10.6			

Schöck Isokorb® T type Q-P	V6, VV6	V7, VV7	V8, VV8	V9, VV9			
Maximum expansion joint space	e [m]						
Insulating element thickness [mm]	80	9.5	9.5	8.3	8.3		

Schöck Isokorb® T type Q-PZ		V1	V2	V3	V4	V5	V6	V7	V8	V9
Maximum expansion joint spacin	ig	e [m]								
Insulating element thickness [mm]	80	11.0	11.0	11.0	10.6	10.6	9.5	9.5	8.3	8.3

Edge distances

The Schöck Isokorb® must be so arranged at the expansion joint that the following conditions are met:

For the centre distance of the compression elements from the free edge or from the expansion joint: $e_R \ge 50$ mm applies.

For the centre distance of the shear force bars from the free edge or from the expansion joint: $e_R \ge 100$ mm and $e_R \le 150$ mm applies.

Product description

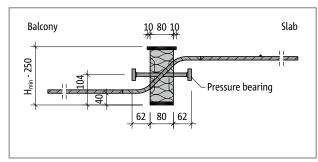


Fig. 167: Schöck Isokorb® T type Q-P: Product section

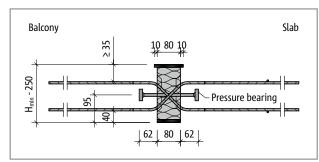


Fig. 169: Schöck Isokorb® T type Q-VV: Product section

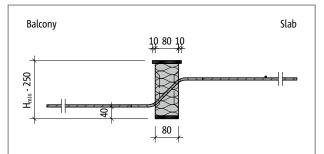


Fig. 171: Schöck Isokorb® T type Q-PZ: Product section

Product information

- Note min. height H_{min} Schöck Isokorb[®] T type Q-P,Q-P-VV, Q-PZ.
- ▶ The length of the Schöck Isokorb® varies dependent on the load-bearing level.
- ▶ The upper fire protection board projects on both sides of the Schöck Isokorb® by 10 mm.
- Download further product plan views and cross-sections at www.schoeck.co.uk/download

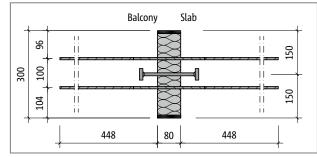


Fig. 168: Schöck Isokorb® T type Q-P-V1: Product layout

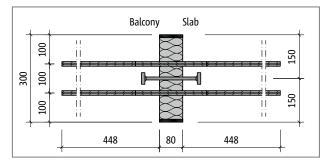
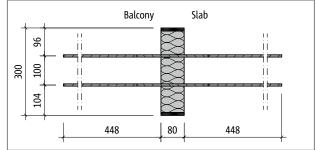
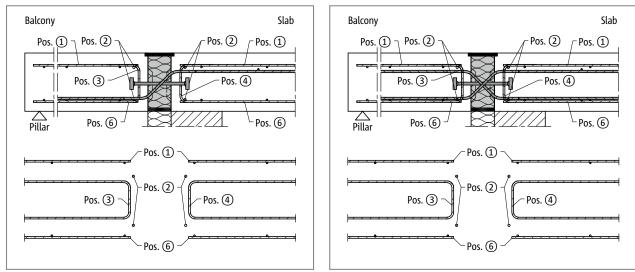
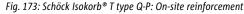
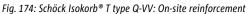


Fig. 170: Schöck Isokorb® T type Q-P-VV1: Product layout


Fig. 172: Schöck Isokorb® T type Q-PZ-V1: Product layout

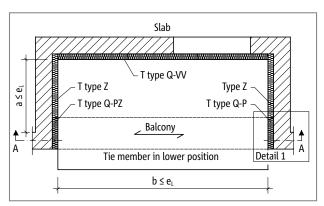
type Q-P

On-site reinforcement - In-situ concrete construction

The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

In addition, it is to be ensured that the shear force bars of the Schöck Isokorb® are 100% lapped, insofar as they lie in the tension zone.

Information about on-site reinforcement


- Lapping of the reinforcement in the connecting reinforced concrete components must be applied as close as possible to the insulating element of the Schöck Isokorb[®], the required concrete cover must be observed.
- The side reinforcement Pos. 5 at the edge of the structural component should be selected as low as possible so that it can be arranged between top and bottom reinforcement position.
- The Schöck Isokorb®T type Q-P and Q-PZ for connection free of constraint forces requires a reinforced tie bar in the lower position. Select A_{s,reg} according to application example recessed balcony page 121.
- The shear force bars are to be anchored with their straight ends in the pressure zone. In the tension zone the shear force bars are to be lapped.
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

Reinforced concrete – reinforced concrete

On-site reinforcement - In-situ concrete construction

Schöck Isokorb ^o	[®] T type Q-P, Q-PZ	V1, VV1	V2, VV2	V3, VV3	V4, VV4	V5, VV5				
On-site reinforcement	Location		Concre	te strength class ≥ (225/30					
Pos. 1 Lapping reinforcement										
Pos. 1	Balcony/floor side	necessary in the tension zone, as specified by the structural engineer								
Pos. 2 Steel bars along the insulation joint										
Pos. 2	Balcony/floor side	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8				
Pos. 3 Stirrup										
Pos. 3 [mm ² /Element]	Balcony/floor side	71	107	142	104	150				
Pos. 5 Side reinfor	cement at the free ed	ge								
Pos. 5	Balcony/floor side		Edging as per BS E	N 1992-1-1 (EC2), 9.3	8.1.4 (not pictured)					
Pos. 6 Lapping rein	nforcement									
Pos. 6		nec	essary in the tension	zone, as specified by	y the structural engir	neer				

Schöck Isokorb	® T type Q-P, Q-PZ	V6, VV6	V7, VV7	V8, VV8	V9, VV9				
On-site reinforcement	Location		Concrete strengt	th class ≥ C25/30					
Pos. 1 Lapping rei	nforcement								
Pos. 1	Balcony/floor side	necessary in the tension zone, as specified by the structural engineer							
Pos. 2 Steel bars a	Pos. 2 Steel bars along the insulation joint								
Pos. 2	Balcony/floor side	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8				
Pos. 3 Stirrup									
Pos. 3 [mm ² /Element]	Balcony/floor side	150	227	200	300				
Pos. 5 Side reinfor	cement at the free ed	ge							
Pos. 5	Balcony/floor side	Edging as per BS EN 1992-1-1 (EC2), 9.3.1.4 (not pictured)							
Pos. 6 Lapping rei	nforcement								
Pos. 6		necessar	y in the tension zone, as s	pecified by the structural	engineer				

Application case recessed balcony

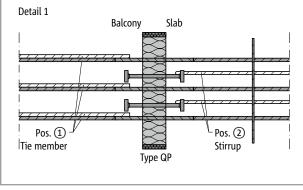
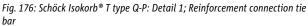
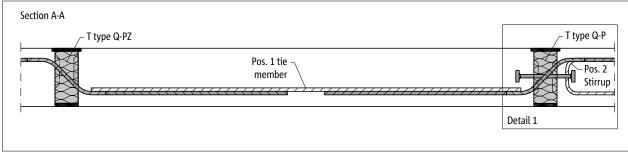
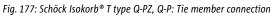





Fig. 175: Schöck Isokorb® T type Q-PZ, Q-P: Layout of recessed balcony

A T type Q-PZ without pressure bearing is to be arranged on one side for support free of constraint forces. A T type Q-P with pressure bearing is then required on the opposite side. In order to maintain the balance of forces a tie bar, which laps with the shear force transferring Isokorb[®] bars, is to reinforce between T type Q-PZ and T type Q-P.

Schöck Isokorb® T type Q-P, Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9		
On-site reinforcement	Concrete strength class ≥ C25/30										
Pos. 1 Tie											
Pos. 1	2 • H8	3 • H8	4 • H8	2 • H10	3•H10	2•H12	3•H12	2•H16	3•H16		
Pos. 2 Stirrup (bracing)	g)										
Pos. 2	1•H8	2 • H8	2 • H8	1•H10	2•H10	2 • H10	2•H10	2•H10	3•H10		

Schöck Isokorb® T type Q-P, Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9		
Fixed point separa- tion recessed balcony		e. [m]									
a, b ≤	5.5	5.5	5.5	5.3	5.3	4.7	4.7	4.2	4.2		

Information on tie bar

- The fixed point separations a, b are to be selected with $a \le e_L$ and $b \le e_L$.
- ▶ The floor side bracing of the tie is carried out via on-site stirrups, which are tied to the pressure bearings.
- The required suspension reinforcement and the on-site slab reinforcement are not shown here.

Application example recessed balcony - symmetrical | Expansion joint spacing

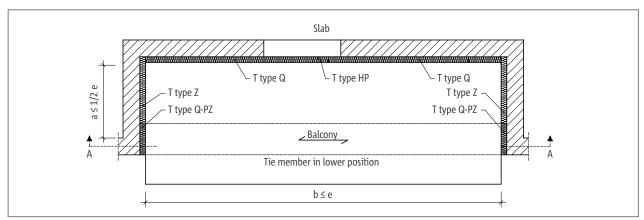
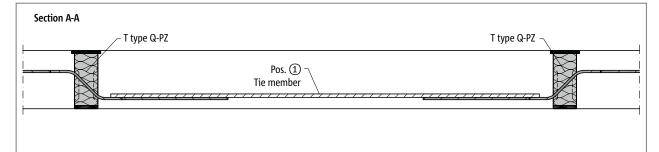
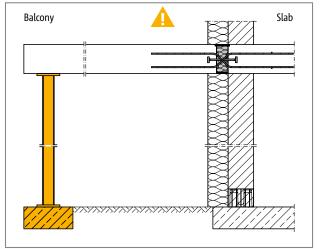



Fig. 178: Schöck Isokorb® T type Q-PZ: Layout of recessed balcony - symmetrical

A T type Q-PZ without pressure bearing is to be arranged on both sides for support free of constraint forces. In order to maintain the balance of forces a tie bar, which laps with the shear force transferring Isokorb[®] bars, is to reinforce between T types Q-PZ.


Fig. 179: Schöck Isokorb® T type Q-PZ: Tie member connection

Schöck Isokorb® T type Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9	
Maximum expansion joint spaci	Maximum expansion joint spacing e [m]									
Insulating element thickness [mm] 80		11.0	11.0	11.0	10.6	10.6	9.5	9.5	8.3	8.3

Schöck Isokorb® T type Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9			
On-site reinforcement		Concrete strength class ≥ C25/30										
Pos. 1 Tie												
Pos. 1	2 • H8	3 • H8	4 • H8	2 • H10	3•H10	2•H12	3•H12	2•H16	3•H16			

Recessed balcony

- The fixed point spacings a, b are to be selected as $a \le 1/2$ e and $b \le e$.
- > The required suspension reinforcement and the on-site slab reinforcement are not shown here.
- This arrangement of the Schöck Isokorb[®] (T type Q-PZ opposing) is suitable for symmetrical layouts only, if the asymmetrical load case is not relevant

Type of bearing: supported | Installation instructions

Fig. 180: Schöck Isokorb[®] T type Q-VV: Support required at all times

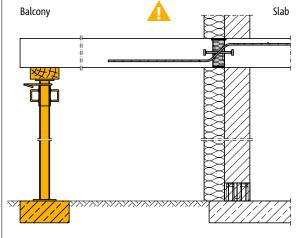


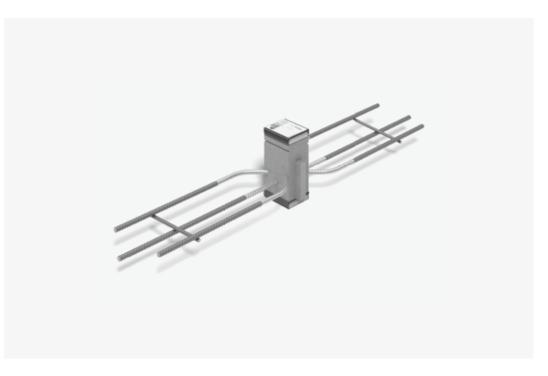
Fig. 181: Schöck Isokorb® T type Q-P: Support required at all times

Supported balcony

The Schöck Isokorb type Q, Q+Q and VV is developed for supported balconies. It transfers exclusively shear forces, no bending moments.

\rm Marning - omitting the pillars

- > The balcony will collapse if not supported.
- At all stages of construction, the balcony must be supported with statically suitable pillars or supports.
- Even when completed, the balcony must be supported with statically suitable pillars or supports.
- A removal of temporary support is permitted only after installation of the final support.


🚺 Installation manual

▶ Installation manual see Technical Information Schöck Isokorb® XT for reinforced concrete structures.

🗹 Check list

- Has the right type of Schöck Isokorb[®] been selected for the static system? Type QP is a connection purely for shear forces (moment joint).
- Is the balcony so planned that a continuous support is ensured in all stages of construction and in the final status?
- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- Are the Schöck FEM guidelines taken into account with the calculation using FEM?
- □ Is the minimum slab thickness taken into consideration with Schöck Isokorb[®] types in fire protection configuration?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- Are the maximum allowable expansion joint spacings taken into account?
- Is the required component geometry present with the connection to a floor or a wall? Is a special design required?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have existing horizontal loads e.g. from wind pressure been taken into account as planned? Are additional Schöck Isokorb® T type H required for this?
- With precast balconies are possibly necessary gaps for the front side transportation anchors and downpipes with internal drainage taken into account? Is the maximum centre distance of 300 mm for the Isokorb[®] bars observed?
- With 2- or 3-sided support has a Schöck Isokorb[®] (possibly T type Q-Z, T type Q-PZ) been selected for a connection free of constraint forces?

Schöck Isokorb® T type H

Schöck Isokorb® T type H

Suitable for ordinary existing horizontal forces.

The Schöck Isokorb[®] T type H-NN transfers forces at right angles to the insulation layer. The Schöck Isokorb[®] T type H-VV-NN transfers forces both parallel and also at right angles to the insulation layer.

The Schöck Isokorb[®] T type H-VV-NN and/or T type H-NN is may be used only in conjunction with other Isokorb[®] types that can transfer shear forces and, if necessary, moments.

Element arrangement | Installation cross sections

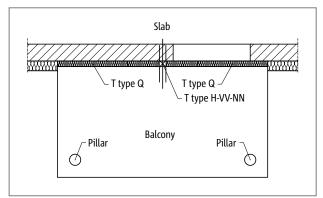


Fig. 182: Schöck Isokorb® T type H: Balcony with column support

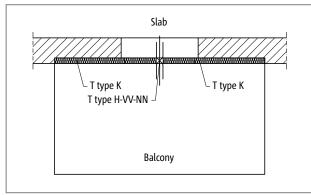


Fig. 184: Schöck Isokorb® T type H: Cantilevered balcony

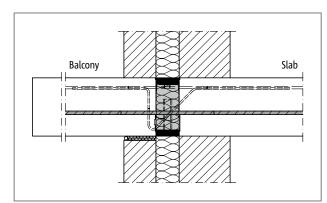


Fig. 186: Schöck Isokorb® T type K, H-NN: Connection with non- cavity masonry

🚺 Geometry

The employment of the Schöck Isokorb[®] T types H-NN1 and H-VV1-NN1 is possible with a wall connection with a minimum wall thickness of 200 mm.

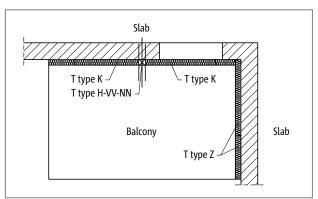


Fig. 183: Schöck Isokorb® T type H: Cantilevered balcony

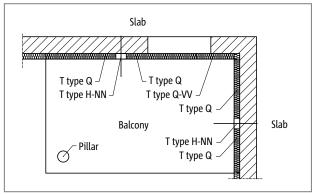


Fig. 185: Schöck Isokorb® T type H: Balcony supported on two sides with column

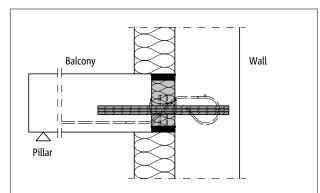
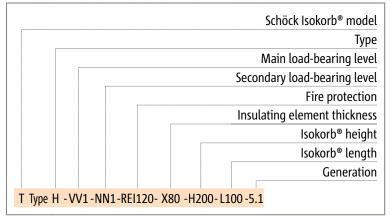


Fig. 187: Schöck Isokorb® T type Q, H-VV-NN: Connection to a reinforced concrete wall with external insulation

ype H

Product selection | Type designations | Special designs

Schöck Isokorb® T type H variants


The configuration of the Schöck Isokorb[®] T type H can be varied as follows:

- Main load-bearing level:
 VV1, VV2, NN1, NN2
- Secondary load-bearing level: NN1

NN2 is available upon request

- Fire resistance class: REI120 (standard)
- Insulating element thickness: X80 = 80 mm
- Isokorb[®] height:
- H = 160 to 250 mm
- Isokorb®length:
- L = 100 mm
- Generation:
 - 5.1

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

C25/30 design

Isokorb[®] length [mm]

Isokorb[®] height H [mm]

Schöck Isokorb® T type H	NN1		NN2		VV1-NN1		VV2-NN1	
Design values with	V _{Rd,y} [kN]	N _{Rd,x} [kN]						
C25/30	0.0	±11.6	0.0	±49.2	±10.4	±11.6	±39.2	±49.2
Shear force bars, horizontal	-			-		Ø 10	2 × 1 Ø 12	
Tension bars/compression bars	1 Ø 10		10	۶ 12	1e	Ø 10) 1ø	

100

160 - 250

100

160 - 250

100

160 - 250

100

160 - 250

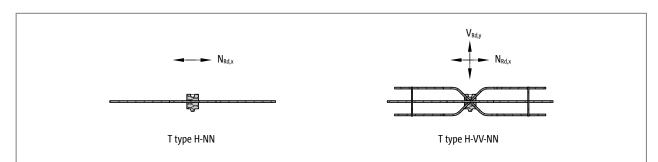


Fig. 188: Schöck Isokorb® T type H: Type selection

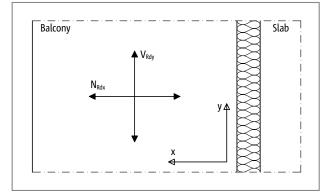


Fig.

Notes on design

- With the design of a linear connection, attention is to be paid that, with the employment of the supplementary type H, the design values of the linear connection can be reduced (e.g. T type Q with L = 1.0 m and T type H with L = 0.1 m in regular exchange signifies a reduction by ca. 9 % of v_{Rd} of the linear connection using type T type Q).
- ▶ With the type selection (T Typ H-NN or H-VV-NN) and arrangement, attention is to be paid that no unnecessary fixed points are created and the maximum expansion joint spacings (of e.g. type K, type Q or type D) are maintained.
- ▶ The required number of Schöck Isokorb® T type H-NN or H-VV-NN is to be determined according to static requirements.
- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- ▶ The indicative minimum concrete strength class of the external structural component is C32/40.

Expansion joint spacing

Maximum expansion joint spacing

If the structural element length exceeds the maximum expansion joint spacing e, then expansion joints must be incorporated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. The maximum expansion joint spacing e/2 applies to fixed points such as balcony corners or to the use of the Schöck Isokorb[®] T types H.

The shear force transmission in the expansion joint can be ensured using a longitudinally displaceable shear force dowel, e.g. Schöck Dorn.

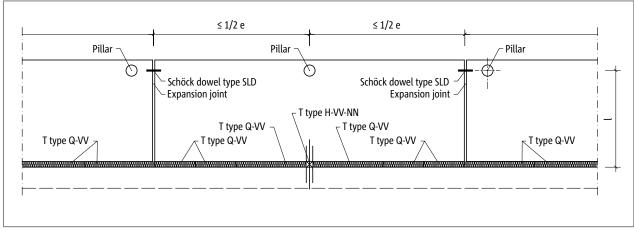


Fig. 189: Schöck Isokorb® T type H: Expansion joint layout

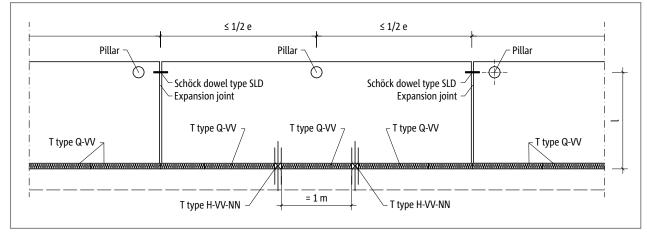


Fig. 190: Schöck Isokorb® T type H: Expansion joint layout

Expansion joint spacing

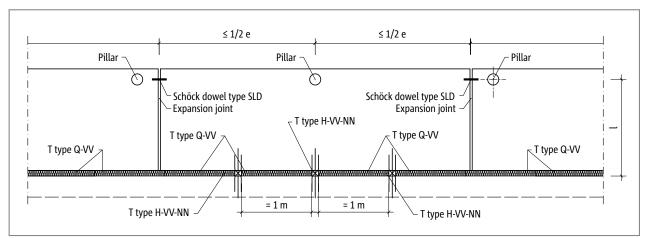


Fig. 191: Schöck Isokorb® T type H: Expansion joint layout

Schöck Isokorb® T type H combined with	T type K	T type K-U K-O	T type Q, Q-VV	T types Q-P, Q-P-VV Q-PZ	T type D
maximum expansion joint spacing from fixed point e/2 [m]	≤ e/2 see type K	6.5	≤ e/2 see Type Q, Q-VV	≤ e/2 see T Typ Q-P, Q-P-VV, Q-PZ	5.9

Expansion joints

A maximum of three Schöck Isokorb® T type H-VV-NNs may be connected to a balcony. Another Schöck Isokorb® type with a connection length of one metre must be arranged between two of these elements.

If two Schöck Isokorb® T type H-NNs are arranged on each edge of the expansion joint, then the following permitted expansion joint spacings must be maintained for T type H-NN:

T type H-NN1: 13.0 m

T type H-NN2: 11.7 m

In addition, the combination of Schöck Isokorb[®] types being used should also be taken into account for determining the maximum expansion joint spacings.

Product description

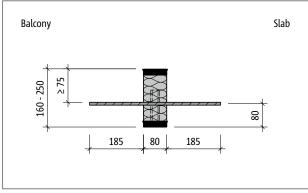


Fig. 192: Schöck Isokorb® T type H-NN1: Product sction

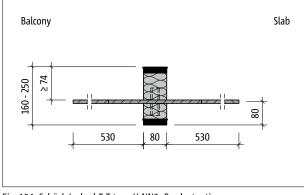


Fig. 194: Schöck Isokorb® T type H-NN2: Product sction

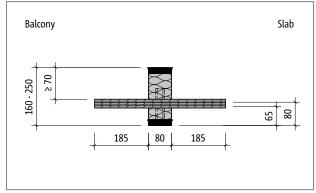


Fig. 196: Schöck Isokorb® T type H-VV1-NN1: Product section

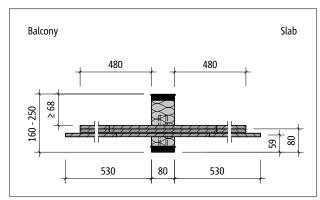


Fig. 198: Schöck Isokorb® T type H-VV2-NN1: Product sction

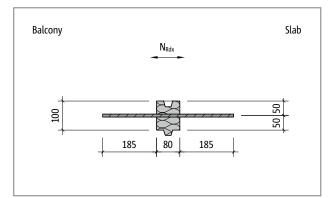


Fig. 193: Schöck Isokorb® T type H-NN1: Product layout

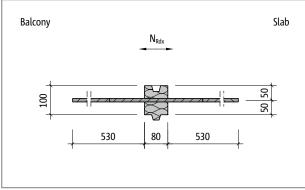


Fig. 195: Schöck Isokorb® T type H-NN2: Product layout

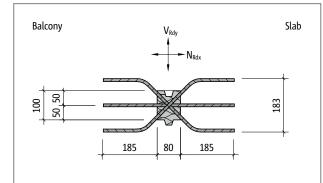


Fig. 197: Schöck Isokorb® T type H-VV1-NN1: Product layout

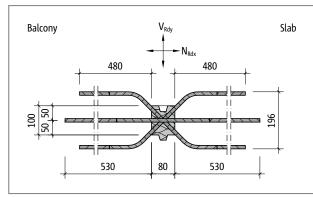
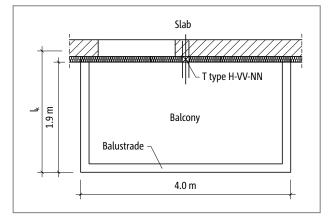



Fig. 199: Schöck Isokorb® T type H-VV2-NN1: Product layout

Design example

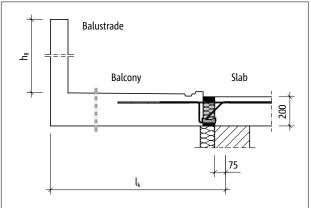


Fig. 200: Schöck Isokorb® T type K, H: Layout

Fig. 201: Schöck Isokorb® T type K: Static system

Static system and load a	ssumptions	
Geometry:	cantilever length	l _k = 2.06 m
	balcony slab thickness h = 2	00 mm
	three-sided wraparound balustrade	h _R = 1.0 m
Load assumptions:	balcony slab and surfacing	g = 6.5 kN/m ²
	live load	q = 4.0 kN/m²
	Edge load (balustrade)	g _R = 3.0 kN/m
	wind pressure	$w_{e} = 1.0 \text{ kN/m}^{2}$
Exposure classes:	exterior XC 4	
	interior XC 1	
selected:	concrete grade C25/30 for balcony a	nd floor
	concrete cover $c_{nom} = 35$ mm for Isok	
		g quality measure Schöck Isokorb® production)
Connection geometry: Support floor: Floor edge dir	No height offset, no floor edge dow ectly supported	nstand beam, no balcony upstand

Support balcony: Restaint of cantilever slab using Type K

Design example | Installation instructions

Verifications in the ultin	nate limit	state
Internal forcess:	m _{Ed}	$= -[(\gamma_{G} \cdot g + \gamma_{Q} \cdot q) \cdot l_{k}^{2}/2 + \gamma_{G} \cdot (g_{R} \cdot l_{k} + 2 \cdot g_{R} \cdot l_{k}^{2}/2/4)]$ _{Ed} = -[(1.35 \cdot 6.5 + 1.5 \cdot 4) \cdot 2.06^{2}/2 + 1.35 \cdot (3.0 \cdot 2.06 + 2 \cdot 3.0 \cdot 2.06)]
2.06 ² /2/4)]		$= -[(1.35 \cdot 6.5 + 1.5 \cdot 4) \cdot 2.06^{2}/2 + 1.35 \cdot (3.0 \cdot 2.06 + 2 \cdot 3.0 \cdot 2.06 + 2 \cdot 3.06 + 2 \cdot 3.$
	m _{Ed}	= -44.0 kNm/m
	V _{Ed,z} V _{Ed,z} V _{Ed,z}	$= +(\gamma_{G} \cdot g + \gamma_{Q} \cdot q) \cdot l_{k} + \gamma_{G} \cdot (g_{R} + 2 \cdot g_{R} \cdot l_{k}/4)$ = +(1.35 \cdot 6.5 + 1.5 \cdot 4.0) \cdot 2.06 + 1.35 \cdot (3.0 + 2 \cdot 3.0 \cdot 2.06/4) = +38.7 kN/m = +38.7 kN/m
	$\begin{array}{l} N_{\text{Ed},x} \\ V_{\text{Ed},y} \end{array}$	= γ _Q • w _e • 4.0 • (h + h _R) = 1.5 • 1.0 • 4.0 • (0.2 + 1.0) = 7.2 kN (frontal wind) = γ _Q • w _e • 2 • 1.9 • (h + h _R) = 1.5 • 1.0 • 2 • 1.9 • (0.2 + 1.0) = 6.8 kN (lateral windind)
Selected:	1 Schöck N _{Rd,x=} _{Rd,y}	sokorb® T type H-VV1-NN1-REI120-H200-L100-5.1 ±11.6 kN (see page128) > N _{Ed,x} = ±10.4 kN (see page128) > V _{Ed,y}
selected:		okorb® T type K-M7-V1-REI120-CV35-X80-H200-6.0 effect taking into account the installation of the Schöck Isokorb® T type H: = 49.4 kNm/m (see T type K) > 45.7 kNm/m = (4.00 m /3.90 m) • 44. kNm/m = m _{Ed} = 92.7 kN/m (see T type K) > 40.2 kN/m = (4.00 m /3.90 m) • 38.7 kN/m = v _{Ed,z}
Verification for the exce	ptional lo	ad case earthquake
Load assumptions for earthqu		F _{a,x} = ±15.0 kN/m (horizontal, parallel to the joint) 0 kN/m (horizontal, perpendicular to the joint)
Internal forces:	N _{EdA,x} V _{EdA,y}	= ±4.0 m • $F_{a,x}$ = ±4.0 m • 15.0 kN/m = 60.0 kN (force perpendicular to the joint) = ±4.0 m • $F_{a,y}$ = ±4.0 m • 15.0 kN/m = 60.0 kN (force parallel to the joint)
selected:	1 Schöck I N _{Rd,x=} ^{Rd,y}	sokorb [®] T type H-VV2-NN1-REI120-H200-L100-5.1 $\pm 49.2 \text{ kN} \cdot 2 = 98.4 \text{ kN}$ (see page128) > N _{Ed,x} = $\pm 39.2 \text{ kN} \cdot 2 = 78.4 \text{ kN}$ (see page128) > V _{Ed,y}
selected:		Dekorb® T type K-M7-V1-REI120-CV35-X80-H200-6.0 effect taking into account the installation of the Schöck Isokorb® T type H: = 49.4 kNm/m (see T type K) > 46.3 kNm/m = (4.00 m /3.80 m) • 44. kNm/m = m _{Ed} = 92.7 kN/m (see T type K) > 40.7 kN/m = (4.00 m /3.80 m) • 38.7 kN/m = v _{Ed,z}

Design example

The notes on expansion joint spacing are to be observed, see page 130.

Installation manual

Installation manual see Technical Information Schöck Isokorb® XT for reinforced concrete structures.

🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- With a linear connection in combination with Schöck Isokorb[®] of length 1 m, has the reduction of the design values of the linear connection been taken into account?
- Are the maximum allowable expansion joint spacings taken into account?
- Is the required component geometry present with the connection to a floor or a wall? Is a special design required?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?

Schöck Isokorb® T type Z

Schöck Isokorb® T type Z

Suitable as insulating spacer for various installation situations and fire protection requirements. The Schöck Isokorb[®] T type Z transfers no forces.

Element arrangement | Installation cross sections



Fig. 202: Schöck Isokorb® T type K: Precast balcony with transporter anchor; insulation spacer T type Z can be inserted on-site

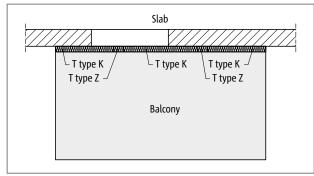
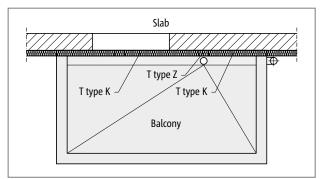



Fig. 204: Schöck Isokorb® T type Z, K: Cantilevered balcony

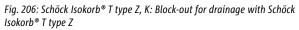
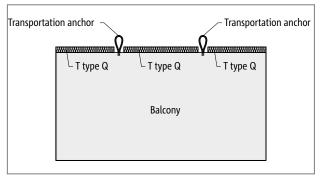
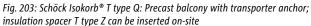




Fig. 208: Schöck Isokorb® T type Z, K: Indirect support, non-load-bearing cavity masonry

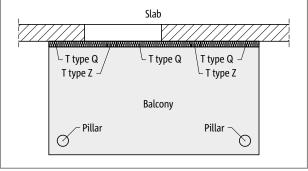


Fig. 205: Schöck Isokorb® T type Z, K: Balcony with column support

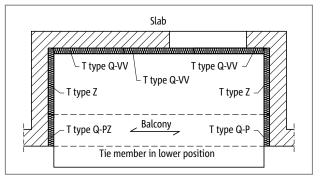


Fig. 207: Schöck Isokorb $^{\otimes}$ T type K: Recessed balcony supported on three sides with tie member

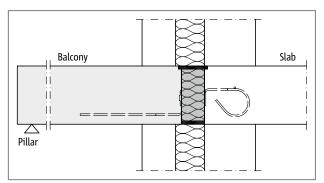


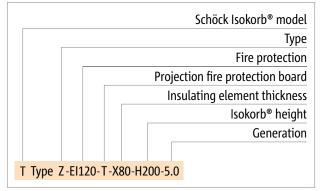
Fig. 209: Schöck Isokorb® T type Z, Q: Indirect support, non-load-bearing cavity masonry

Product selection | Type designations

Schöck Isokorb® T type Z variants

The configuration of the Schöck Isokorb[®] T type Z can be varied as follows:

- Fire resistance class El120: Fire protection board top and bottom, top fire protection board without projection, with clout and fire protection strip E1120-T Fire protection board top and bottom, top fire protection board projecting on both sides by 10 mm
- Projection fire protection board:
 T = Projection fire protection board
- Insulating element thickness:
 X80 = 80 mm
- Isokorb® height:


H = 160 - 250 mm

Generation:

5.0

- Isokorb® length:
 - L = 100 mm or 1000 mm

Type designations in planning documents

Product description

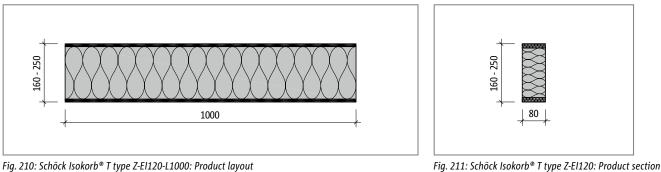


Fig. 210: Schöck Isokorb® T type Z-EI120-L1000: Product layout

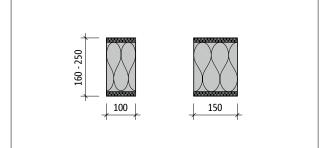


Fig. 212: Schöck Isokorb® T type Z-EI120-L100, Z-EI120-L150: Product layout

i **Product information**

- The Schöck Isokorb® T type Z is supplied in 1000 mm lengths (length 100 mm and 150 mm on request)
- The Schöck Isokorb[®] T type Z-L1000 can, as required, be shortened to the desired length.
- Download further product plan views and cross-sections at www.schoeck.co.uk/download

i Notes on design

- Edge and centre distances of the adjacent Schöck Isokorb[®] types are to be noted.
- With the design of a linear connection attention should be paid that with the employment of the Schöck Isokorb® T type Z, the design values of the linear connection can be reduced (e.g. Schöck Isokorb® type with L = 1.0 m and Schöck Isokorb® T type Z with L = 0.1 m in regular exchange signifies a reduction of m_{Rd} of the linear connection by ca. 9 %).

Fire protection

- The Schöck Isokorb® T type Z-EI120 is suitable for employment with Schöck Isokorb® T type K and K-F.
- The Schöck Isokorb[®] type Z-EI120-T is suitable for use with Schöck Isokorb[®] T type K-U, K-O, Q, Q-P and D.
- ▶ The Schöck Isokorb®T type Z-EI120 can be inserted later (e.g. transportation anchor holes with precast balconies), as fire protection boards without projection.
- ▶ The fire protection class of the Schöck Isokorb® T type Z corresponds with maximum fire protection class of the connected, load-bearing Schöck Isokorb T type (e.g. $K \rightarrow REI120$).

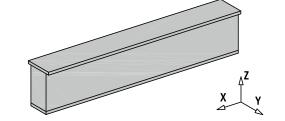
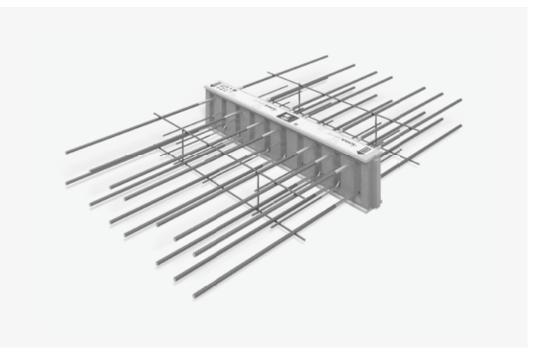
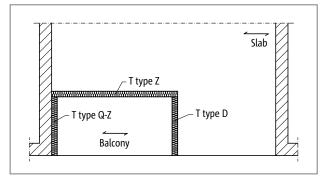



Fig. 213: Schöck Isokorb® T type Z-EI120-T: 3D model

🗹 Check list

- With a linear connection in combination with Schöck Isokorb® of length 1 m, has the reduction of the design values of the linear connection been taken into account?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?


Schöck Isokorb® T type D

Schöck Isokorb® T type D

Suitable for continuous floors. It transfers both negative moments and positive shear forces with the cantilevered balcony or positive field moment combined with shear forces

Element arrangement | Installation cross sections

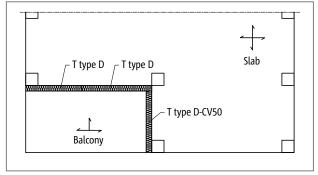


Fig. 214: Schöck Isokorb® T type D, QZ; Z: One-way spanning

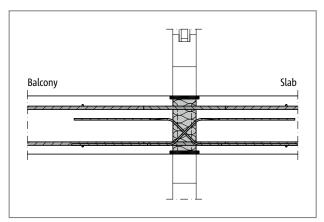


Fig. 215: Schöck Isokorb® T type D: Two-way spanning

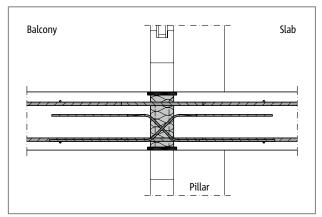


Fig. 216: Schöck Isokorb® T type D: Installation section; one-way spanning

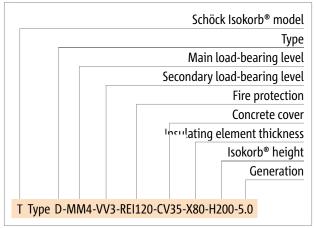
Element arrangement

When connecting across a corner with Schöck Isokorb® T type D, a T type D-CV50 (2nd layer) is required in one axial direction. This results in a minimum slab thickness of 200 mm.

T Type D

Product selection | Type designations | Special designs

Schöck Isokorb® T type D variants


The configuration of the Schöck Isokorb® T type D can be varied as follows:

- Main load-bearing level:
 - MM2 to MM5
 - MM1 is available upon request
- Secondary load-bearing level: VV1 to VV3
- Fire resistance class: REI120 (standard): Top and bottom fire protection projecting by 10 mm on both sides
- Concrete cover to the tension bars: CV30: top CV = 30 mm, bottom CV = 30 mm CV35: top CV = 35 mm, bottom CV = 30 mm CV50: top CV = 50 mm, bottom CV = 50 mm
- Insulating element thickness:
 - X80 = 80 mm
- Isokorb® height:

H = H_{min} to 250 mm (H_{min} depends on the concrete cover and shear force load-bearing level, see page 144)

- Generation:
 - 5.0

Type designation in planning documents

🧾 Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

In accordance with approval heights up to 500 mm are possible.

C25/30 design

Schöck I	sokorb®	T type D		MM2-VV1	MM2-VV2	MM2-VV3	MM3-VV1	MM3-VV2	MM3-VV3
Design values with		ncrete co CV [mm]	-		(Concrete streng	th class ≥ C25/30)	
WILLI	CV30	CV35	CV50			m _{Rd,y} [k	Nm/m]		
		160		±18.3	-	-	±26.5	-	-
	160		200	±19.4	-	-	±28.1	-	-
		170		±20.5	±18.6	-	±29.7	±27.8	-
	170		210	±21.6	±19.6	-	±31.3	±29.3	-
		180		±22.7	±20.6	±18.5	±32.9	±30.8	±28.6
	180		220	±23.8	±21.6	±19.4	±34.5	±32.3	±30.0
		190		±24.9	±22.6	±20.3	±36.1	±33.8	±31.4
	190		230	±26.0	±23.6	±21.2	±37.6	±35.3	±32.8
		200		±27.1	±24.6	±22.1	±39.2	±36.7	±34.2
lsokorb® height	200		240	±28.2	±25.6	±23.0	±40.8	±38.2	±35.6
H [mm]		210		±29.3	±26.6	±23.9	±42.4	±39.7	±37.0
	210		250	±30.4	±27.6	±24.8	±44.0	±41.2	±38.4
		220		±31.5	±28.6	±25.6	±45.6	±42.7	±39.7
	220			±32.6	±29.6	±26.5	±47.2	±44.2	±41.1
		230		±33.7	±30.6	±27.4	±48.8	±45.7	±42.5
	230			±34.8	±31.6	±28.3	±50.4	±47.2	±43.9
		240		±35.9	±32.6	±29.2	±52.0	±48.7	±45.3
	240			±37.0	±33.6	±30.1	±53.6	±50.2	±46.7
		250		±38.1	±34.6	±31.0	±55.2	±51.7	±48.1
	250			±39.2	±35.6	±31.9	±56.8	±53.2	±49.5
						V _{Rd,z} [I	«N/m]		
	V	/1/VV2/\	/V3	±52.2	±92.7	±136.0	±52.2	±92.7	±136.0

G
d
È

Schöck Isokorb® T type D	MM2-VV1	MM2-VV2	MM2-VV3	MM3-VV1	MM3-VV2	MM3-VV3	
lsokorb® length [mm]		1000		1000			
Tension bars/compression members	2 × 5 Ø 12 2 × 7 Ø 12						
Shear force bars	2 × 6 Ø 6	2 × 6 Ø 8	2 × 6 Ø 10	2×6Ø6	2 × 6 Ø 8	2×6Ø10	
H _{min} with CV30 [mm]	160	170	180	160	170	180	
H _{min} with CV35 [mm]	160	170	180	160	170	180	
H _{min} with CV50 [mm]	200	210	220	200	210	220	

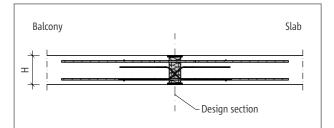


Fig. 218: Schöck Isokorb® T type D: Static system

C25/30 design

Schöck I	sokorb® [®]	T type D		MM4-VV1	MM4-VV2	MM4-VV3	MM5-VV1	MM5-VV2	MM5-VV3	
Design values with	Со	ncrete co CV [mm]	-	Concrete strength class ≥ C25/30						
with	CV30	CV35	CV50	m _{Rd.y} [kNm/m]						
		160		±38.8	-	-	±46.9	-	-	
	160		200	±41.1	-	-	±49.8	-	-	
		170		±43.4	±41.5	-	±52.6	±50.7	-	
	170		210	±45.8	±43.8	-	±55.4	±53.4	-	
		180		±48.1	±46.0	±43.9	±58.3	±56.2	±54.0	
	180		220	±50.4	±48.2	±46.0	±61.1	±58.9	±56.6	
		190		±52.8	±50.5	±48.1	±63.9	±61.6	±59.3	
	190		230	±55.1	±52.7	±50.3	±66.7	±64.3	±61.9	
		200		±57.4	±54.9	±52.4	±69.6	±67.1	±64.5	
lsokorb® height	200		240	±59.8	±57.2	±54.5	±72.4	±69.8	±67.1	
H [mm]		210		±62.1	±59.4	±56.6	±75.2	±72.5	±69.8	
	210		250	±64.4	±61.6	±58.8	±78.0	±75.2	±72.4	
		220		±66.8	±63.9	±60.9	±80.9	±78.0	±75.0	
	220			±69.1	±66.1	±63.0	±83.7	±80.7	±77.6	
		230		±71.4	±68.3	±65.2	±86.5	±83.4	±80.2	
	230			±73.8	±70.6	±67.3	±89.4	±86.2	±82.9	
		240		±76.1	±72.8	±69.4	±92.2	±88.9	±85.5	
	240			±78.4	±75.0	±71.5	±95.0	±91.6	±88.1	
		250		±80.8	±77.3	±73.7	±97.8	±94.3	±90.7	
	250			±83.1	±79.5	±75.8	±100.7	±97.1	±93.4	
						V _{Rd,z} [(N/m]			
	٧١	/1/VV2/\	/V3	±52.2	±92.7	±136.0	±52.2	±92.7	±136.0	

Schöck Isokorb® T type D	MM4-VV1	MM4-VV2	MM4-VV3	MM5-VV1	MM5-VV2	MM5-VV3	
Isokorb [®] length [mm]		1000		1000			
Tension bars/compression members		2 × 10 Ø 12		2 × 12 Ø 12			
Shear force bars	2 × 6 Ø 6	2 × 6 Ø 8	2 × 6 Ø 10	2×6Ø6	2 × 6 Ø 8	2×6Ø10	
H _{min} with CV30 [mm]	160	170	180	160	170	180	
H _{min} with CV35 [mm]	160	170	180	160	170	180	
H _{min} with CV50 [mm]	200	210	220	200	210	220	

Notes on design

- With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- A static verification is to be provided for the adjacent reinforced concrete structural component on both sides of the Schöck Isokorb[®].
- The indicative minimum concrete strength class of the external structural component is C32/40.
- The Schöck Isokorb® T type D transfers only bending moments perpendicular to the insulation body. The Schöck Isokorb® does not transfer torsional moments Therefore the arrangement of a Schöck Isokorb®T type D in in a point-supported slab without downstand beams is not sensible.

Expansion joint spacing

Maximum expansion joint spacing

If the length of the structural component exceeds the maximum expansion joint spacing e, then expansion joints must be integrated into the external concrete components at right angles to the insulating layer in order to limit the effect as a result of temperature changes. For fixed points such as corners of balconies, parapets and balustrades or when using the Schöck Isokorb® T type H, half the maximum expansion joint spacing e/2 applies out from the fixed point.

Schöck Isokorb® T type D	MM2	MM3	MM4	MM5
Maximum expansion joint spacing e		e [m]	
Insulating element thickness [mm] 80		11	1.7	

Edge distances

The Schöck Isokorb® must be so arranged at the expansion joint that the following conditions are met:

- For the centre distance of the tension bars from the free edge or from the expansion joint: $e_R \ge 50$ mm and $e_R \le 150$ mm applies.
- For the centre distance of the compression members from the free edge or from the expansion joint the following applies: $e_R \ge 50 \text{ mm}$.
- For the centre distance of the shear force bars from the free edge or from the expansion joint the following applies: $e_R \ge 100$ mm and $e_R \le 150$ mm.

Product description

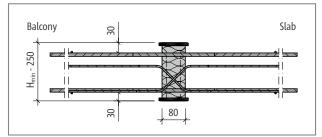


Fig. 219: Schöck Isokorb® T type D with CV30: Product section

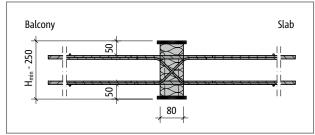


Fig. 221: Schöck Isokorb® T type D for CV50: Product section

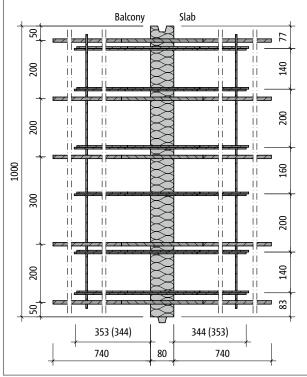


Fig. 222: Schöck Isokorb® T type D-MM2-VV1: Layout

Product information

Download further product plan views and cross-sections at www.schoeck.co.uk/download

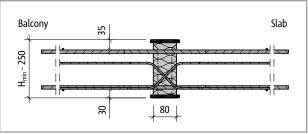
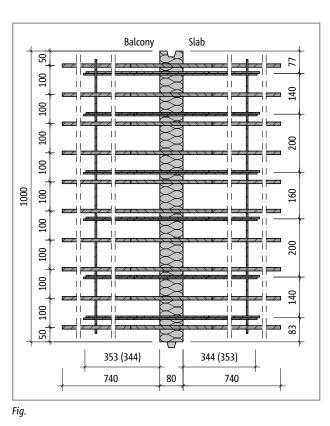



Fig. 220: Schöck Isokorb® T type D for CV35: Product section

On-site reinforcement

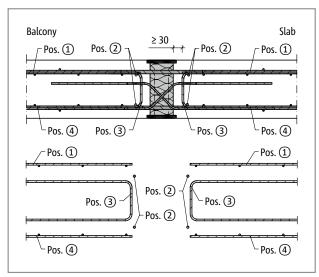


Fig. 223: Schöck Isokorb® T type D: On-site reinforcement

The reinforcement in the reinforced concrete slab is determined from the structural engineer's design. With this both the effective moment and the effective shear force should be taken into account.

In addition, it is to be ensured that the tension bars of the Schöck Isokorb[®] are 100% lapped. The existing inner slab reinforcement can be taken into account as long as the maximum separation to the tension bars of the Schöck Isokorb[®] of 4Ø is maintained. Additional reinforcement may be required.

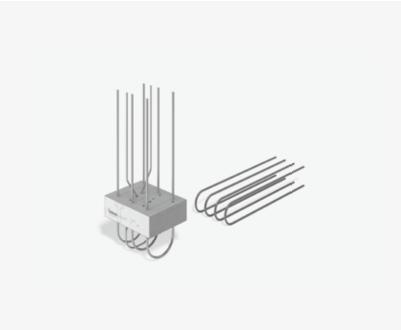
Schöck Isokorb® T type D	MM2-VV1	MM2-VV2	MM2-VV3	MM3-VV1	MM3-VV2	MM3-VV3			
On-site reinforcement	Concrete strength class ≥ C25/30								
Pos. 1 Lapping reinforcement (re	quired with nega	tive moment))							
Pos. 1 [mm²/m]	565	565	565	792	792	792			
Pos. 2 Steel bars along the insula	ation joint								
Pos. 2	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8			
Pos. 3 Edge and suspension reinf	orcement								
Pos. 3	H8@150	H8@100	H8@75	H8@150	H8@100	H8@75			
Pos. 4 Lapping reinforcement (re	Pos. 4 Lapping reinforcement (required with positive moment)								
Pos. 4 [mm²/m]	565	565	565	792	792	792			

Schöck Isokorb® T type D	MM4-VV1	MM4-VV2	MM4-VV3	MM5-VV1	MM5-VV2	MM5-VV3			
On-site reinforcement	Concrete strength class ≥ C25/30								
Pos. 1 Lapping reinforcement (re	quired with nega	tive moment))							
Pos. 1 [mm ² /m]	1131	1131	1131	1357	1357	1357			
Pos. 2 Steel bars along the insula	ation joint								
Pos. 2	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8	2 • 2 • H8			
Pos. 3 Edge and suspension reinf	orcement								
Pos. 3	H8@150	H8@100	H8@75	H8@150	H8@100	H8@75			
Pos. 4 Lapping reinforcement (re	ent (required with positive moment)								
Pos. 4 [mm²/m]	1131	1131	1131	1357	1357	1357			

On-site reinforcement | Installation instructions

Information about on-site reinforcement

- ▶ The rules as per BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply for calculating the lap length. A reduction of the required lap length with m_{Ed}/m_{Rd} is permitted. For the lapping (l) with Schöck Isokorb[®] a length of the tension bars of 710 mm is accounted for for type D
- Edge and suspension reinforcement (pos. 3) is to be arranged on both sides of the Schöck Isokorb[®] T type D. Details in the table apply for Schöck Isokorb[®] with a loading of 100 % of the maximum design internal forces with C25/30.


Installation manual

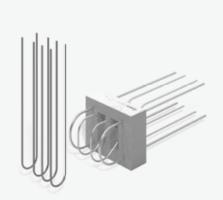
Installation manual see Technical Information Schöck Isokorb® XT for reinforced concrete structures.

🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- Are the maximum allowable expansion joint spacings taken into account?
- With the selection of the design table is the relevant concrete cover taken into account?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Has the minimum slab thickness (≥ 200 mm) and the required 2nd layer (CV50) been taken into account for a connection across a corner? with Schöck Isokorb® T type D?
- Has the required cutout (width ≥ 760 mm from insulating element) been marked in the construction drawings for the T type D in conjunction with semi-precast balcony slabs and has the on site reinforcement been adjusted constructively?
- With 2- or 3-sided support has a Schöck Isokorb[®] (possibly T type Q-Z, T type Q-PZ) been selected for a connection free of constraint forces?
- Have the requirements for on-site reinforcement of connections been defined in each case?

Schöck Isokorb® T type A

Schöck Isokorb® T type A


Suitable for parapets and balustrades. It transfers moments and shear forces and compression forces.

🧾 T type A

▶ The Schöck Isokorb® T type A is replaced by the Schöck Isokorb® XT type A.

T type A

Schöck Isokorb® T type F

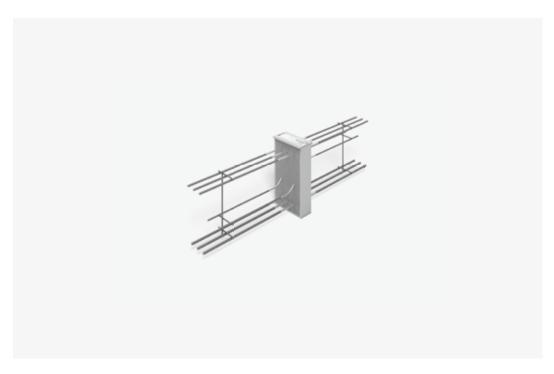
Schöck Isokorb® type F

Suitable forfrontally connected balustrades. It transfers normal forces, positive and negative moments and shear forces.

🧾 T type F

The Schöck Isokorb® T type F is replaced by the Schöck Isokorb® XT type F. With special geometric requirements the Schöck Isokorb® T type F is available on request.

Schöck Isokorb® type O


Schöck Isokorb® T type O

Suitable for corbels. It transfers positive shear forces and normal forces.

🚺 T type O

The Schöck Isokorb® T type O is replaced by the Schöck Isokorb® XT type O. With special geometric requirements the Schöck Isokorb® T type O is available on request.

Schöck Isokorb® T type B

Schöck Isokorb® T type B

Suitable for cantilevered downstand beams and reinforced concrete balconies. It transfers negative moments and positive shear forces.

Element configurations | Installation cross sections

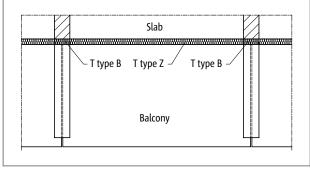


Fig. 224: Schöck Isokorb® T type B: Balcony structure with freely cantilevered downstand beams (precast balcony)

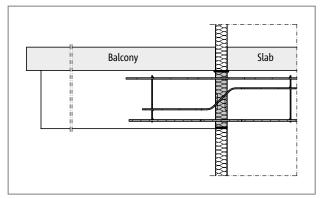


Fig. 226: Schöck Isokorb® T type B: Balcony structure with freely cantilevered downstand beams (precast balcony)

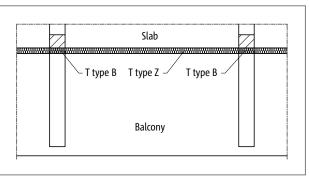


Fig. 225: Schöck Isokorb® T type B: Balcony structure with freely cantilevered downstand beams (precast balcony)

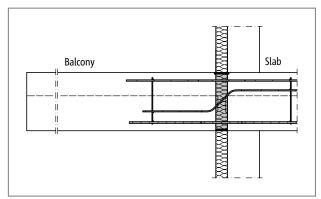
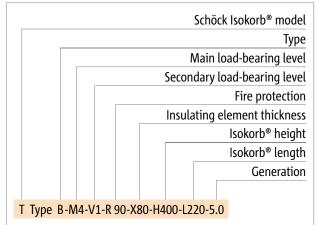


Fig. 227: Schöck Isokorb® T type B: Balcony structure with freely cantilevered downstand beams (precast balcony)

Product selection | Type designations | Special designs


Schöck Isokorb® T type B variants

The configuration of the Schöck Isokorb[®] T type B can be varied as follows:

- Main load-bearing level:
 - M1 to M4
- Secondary load capacity: V1
- Fire resistance class:
- R90 (standard): Top fire projection board projecting on both sides by 10 mm
- Insulating element thickness:
 - X80 = 80 mm
- Isokorb[®] height:
- H = 400 mm
- Isokorb[®] length:
 - L = 220 mm
- Generation:
- 5.0
- Board range:

VB2 moderate bonding (Bonding range II)

Type designations in planning documents

Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

C25/30 design

Schöck l	sokorb® T type B	M1	M2	M3	M4				
Design values with			Concrete strength class ≥ C25/30						
			M _{Rd,y} [kNm	/element]					
	400	-29.6	-39.1	-51.7	-71.1				
Isokorb® height		V _{Rd,z} [kN/element]							
H [mm]	400	30.9	48.3	69.5	94.7				

Schöck Isokorb® T type B	M1	M2	M3	M4
Isokorb® height H [mm]	400	400	400	400
Isokorb® length [mm]	220	220	220	220
Tension bars	3 Ø 10	3 Ø 12	3 Ø 14	3 Ø 16
Tension bars VB2 (poor)	855	1020	1180	1890
Shear force bars	2 Ø 8	2 Ø 10	2 Ø 12	2 Ø 14
Compression bars	3 Ø 12	3 Ø 14	3 Ø 16	3 Ø 20
Compression bar length	595	565	635	840

Fig. 228: Schöck Isokorb® T type B: Static system

Notes on design

- > Poor bonding conditions (bonding range II) are the basis for the determination of the compression member anchoring lengths.
- ▶ With different concrete strength classes (e.g. balcony C32/40, inner slab C25/30) basically the weaker concrete is relevant for the design of the Schöck Isokorb[®].
- The indicative minimum concrete strength class of the external structural component is C32/40.

Expansion joint spacing

Maximum expansion joint spacing

If the structural component length exceeds the maximum expansion joint spacing e, expansion joints must be installed in the exterior concrete structural components at right angles to the insulation plane, in order to limit the effect as a result of temperature changes.

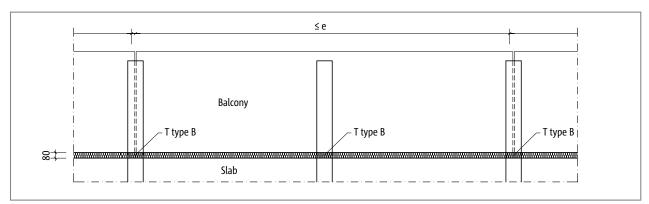


Fig. 229: Schöck Isokorb® T type B: Expansion joint layout

Schöck Isokorb® T type B		M1	M2	M3	M4
Maximum expansion joint spacin	g e		e [m]		
Insulating element thickness [mm]	80	11.7	10.1	9.2	8.0

Expansion joints

The expansion joint spacings can be enlarged, if there is no fixed connection between balcony slabs and downstand beams, e. g. through laying of a sliding foil.

Product description

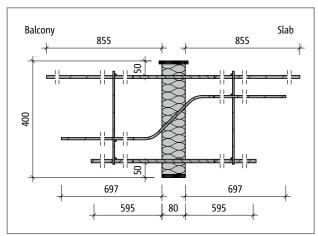


Fig. 230: Schöck Isokorb® T type B-M1: Product section

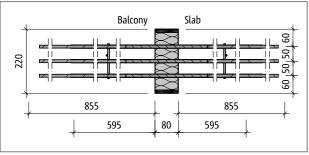


Fig. 231: Schöck Isokorb® T type B: Product layout

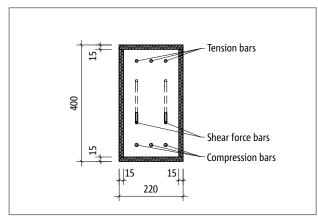
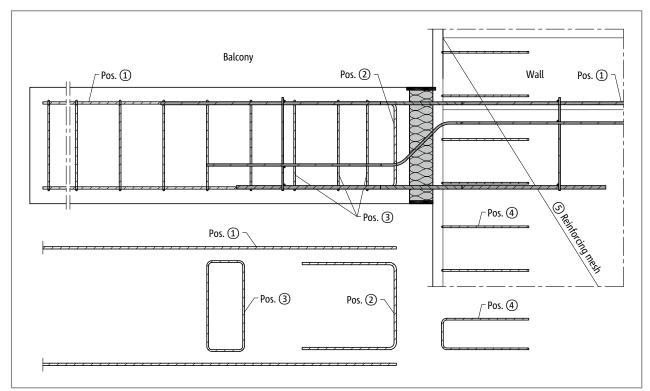



Fig. 232: Schöck Isokorb® T type B: Product layout

Product information

> Download further product plan views and cross-sections at www.schoeck.co.uk/download

T Type B

On-site reinforcement | Installation instructions

Fig. 233: Schöck Isokorb® T type B: On site reinforcement (cross-section)

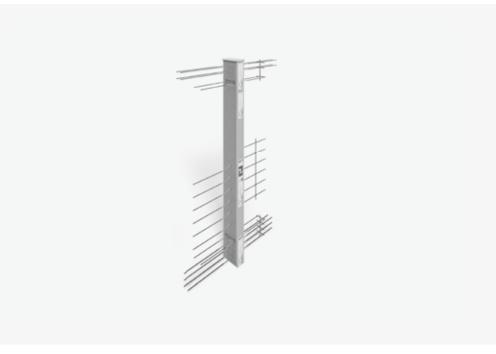
Recommendation for the on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; positively selected: a_s lapping reinforcement $\ge a_s$ Isokorb[®] tension bars/compression members.

Schöck Isokorb® T type B	M1	M2	M3	M4			
On-site reinforcement	Concrete strength class ≥ C25/30						
Pos. 1 Lapping reinforcement							
Pos. 1	3•H10	3 • H12	3•H16	3•H16			
Lap length VB2 (poor)	801	886	1014	1761			
Pos. 2 Suspension reinforcement							
Pos. 2 [mm ²]	71	111	160	218			
Pos. 3 Stirrup							
Pos. 3	ac	c. to the specifications	of the structural engine	er			
Pos. 4 Side reinforcement at the free edge							
Pos. 4	Pos. 4 according to BS EN 1992-1-1 (EC2), 9.3.1.4						
Pos. 5 Wall reinforcement and lapping reinforcem	nent shear force bar						
Pos. 5	ac	c. to the specifications of	of the structural engine	er			

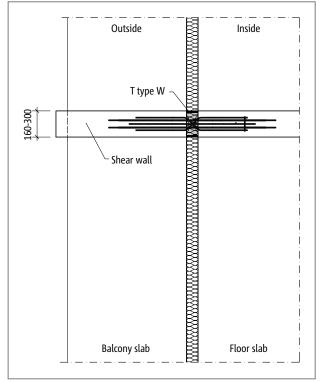
Information about on-site reinforcement

- Alternative connection reinforcement is possible. For the determination of the lap length, the rules according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply FA reduction of the required lap length with m_{Ed}/m_{Rd} is permitted.
- The indicative minimum concrete strength class of the external structural component is C32/40.


Installation manual

Installation manual see Technical Information Schöck Isokorb® XT for reinforced concrete structures.

🗹 Check list


- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- With the selection of the design table is the relevant concrete cover taken into account?
- Are the maximum allowable expansion joint spacings taken into account?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have the requirements for on-site reinforcement of connections been defined in each case?
- Has the bonding range (good VB1; poor VB2) been defined and given in the type designation?

Schöck Isokorb® T type W

Schöck Isokorb® T type W

Suitable for projecting shear walls. It transfers negative moments and positive shear forces. In addition horizontal shear forces are transferred.

Element arrangement | Installation cross section

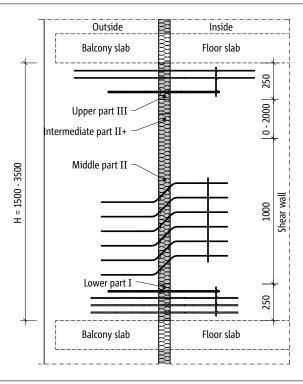


Fig. 234: Schöck Isokorb® T type W: Layout; Balcony structure with thermally insulated load-bearing shear walls

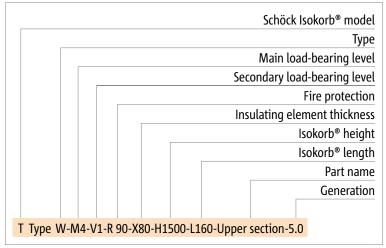
Fig. 235: Schöck Isokorb® T type W: Balcony structure with thermal insulated load-bearing shear walls

Element arrangement

The Schöck Isokorb® T type W consists of at least 3 parts: Bottom section I, middle section II, top section III. Depending on height an insulation spacer II+ is additionally required.

Product selection | Type designations | Special designs

Schöck Isokorb® T type W variants


The configuration of the Schöck Isokorb® T type W can be varied as follows:

- Main load-bearing level: M1 to M4
- Secondary load capacity: V1
- Fire resistance class:
 - R90 (standard): Topr fire protection board, projecting on both sides by both 10 mm
- Insulating element thickness:
 - X80 = 80 mm
- Isokorb® height:
 - H = 1500 3500 mm
- Isokorb[®] length:
- L = 160 300 mm for R90
- Structural element designation: Upper section
- Generation:
 - 5.0

🤨 Variants

> Please specify the required dimensions when ordering.

Type designations in planning documents

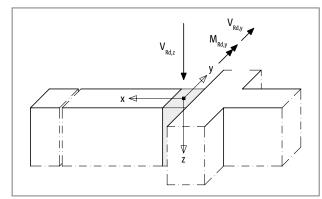
Special designs

Please contact the design support department if you have connections that are not possible with the standard product variants shown in this information (contact details on page 3).

C25/30 design

Schöck Isok	chöck Isokorb® T type W M1		M2	M3	M4
Design	usluos with	Concrete strength class ≥ C25/30			
Design	values with	M _{Rd,y} [kNm/element]			
	1500 - 1990	-64.8	-115.0	-179.5	-146.7
Isokorb® height H [mm]	1500 - 2490	-89.4	-158.8	-247.8	-202.5
[]	2500 - 3500	-114.0	-202.5	-316.1	-258.4
			V _{Rd,z} [kN/	element]	
Isokorb® height	1500 - 3500	52.2	92.7	144.9	208.6
H [mm]					
	1500 - 3500	±17.4	±17.4	±17.4	±17.4

Schöck Isokorb® T type W	M1	M2	M3	M4
Tension bars	4 Ø 6	4 Ø 8	4 Ø 10	4 Ø 12
Compression bars	6 Ø 8	6 Ø 10	6 Ø 12	6 Ø 14
Shear force bars vertical	6 Ø 6	6 Ø 8	6 Ø 10	6 Ø 12
Shear force bars horizontal	2 × 2 Ø 6	2 × 2 Ø 6	2 × 2 Ø 6	2 × 2 Ø 6
B _{min} with RO [mm]	150	150	150	150
B _{min} with R90 [mm]	160	160	160	160



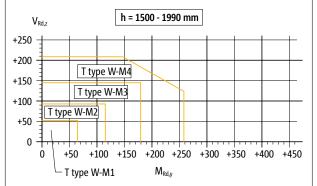
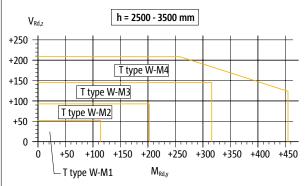


Fig. 236: Schöck Isokorb® T type W: Sign rule for the design



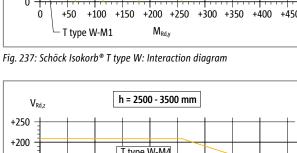

Fig. 238: Schöck Isokorb® T type W: Interaction diagram

Fig. 239: Schöck Isokorb® T type W: Interaction diagram

Notes on design

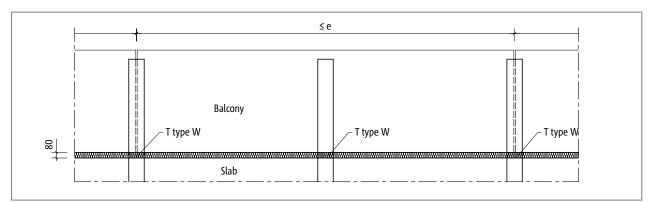
- Wind force moments are to be absorbed by the stiffening effect of the balcony slabs. If this is not possible, M_{Ed,z} can be trans-ferred by the additional layout of a Schöck Isokorb® T type D. The T type D in this case is installed in a vertical position in place of the insulating adapter.
- Poor bonding conditions (bonding range II) are the basis for the determination of the tension bar anchoring lengths.
- The indicative minimum concrete strength class of the external structural component is C32/40.

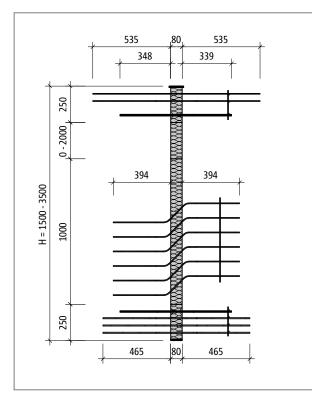
T Type W

Expansion joint spacing

Maximum expansion joint spacing

If the structural component length exceeds the maximum expansion joint spacing e, expansion joints must be installed in the exterior concrete structural components at right angles to the insulation plane, in order to limit the effect as a result of temperature changes.




Fig. 240: Schöck Isokorb® T type W: Expansion joint layout

Schöck Isokorb® T type W		M1	M2	M3	M4
Maximum expansion joint spacin	g e		e [m]		
Insulating element thickness [mm]	80	13.5	13.0	11.7	10.1

Expansion joints

The expansion joint spacings can be enlarged, if there is no fixed connection between balcony slabs and shear walls, e. g. through laying of a sliding foil.

Product description

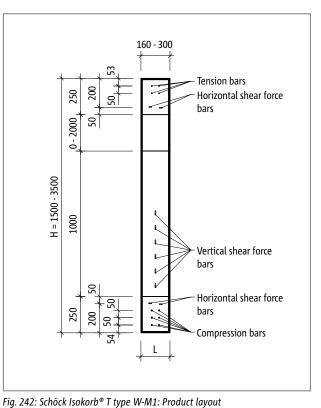


Fig. 241: Schöck Isokorb® T type W-M1: Product section

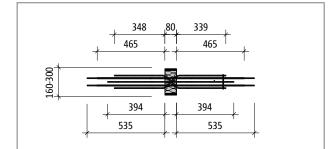


Fig. 243: Schöck Isokorb® T type W-M1: Product layout

I Product information

Download further product plan views and cross-sections at www.schoeck.co.uk/download

TI Schöck Isokorb® T for reinforced concrete structures/GB/2020.1/March

On-site reinforcement

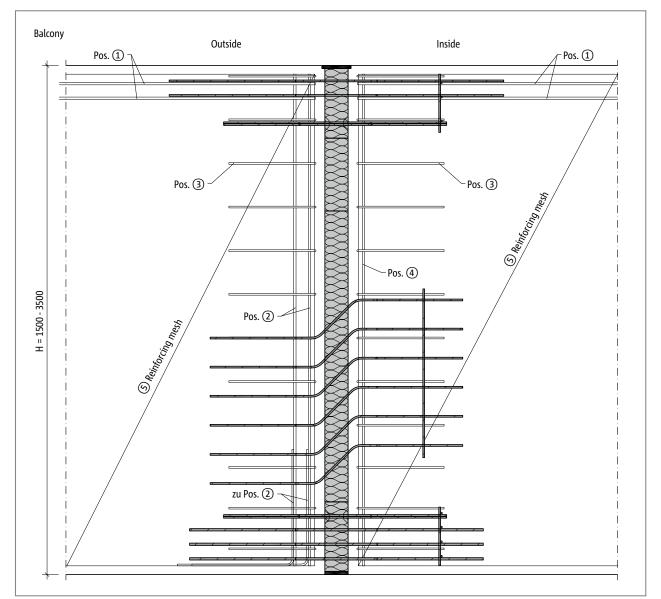


Fig. 244: Schöck Isokorb® T type W: On-site reinforcement (cross-section)

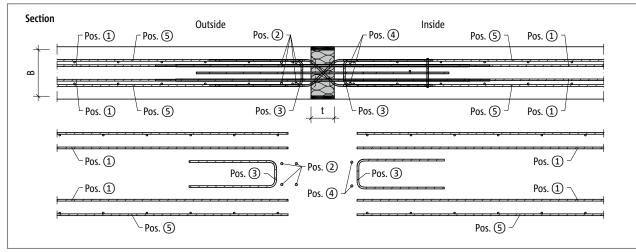


Fig. 245: Schöck Isokorb® T type W: On-site reinforcement (layout)

On-site reinforcement | Installation | Installation instructions

Recommendation for the on-site connection reinforcement

Details of the lapping reinforcement for Schöck Isokorb[®] with a loading of 100 % of the maximum design moment with C25/30; positively selected: a_s lapping reinforcement $\ge a_s$ Isokorb[®] tension bars/compression members.

Schöck Isokorb® T type W	M1	M2	M3	M4
On-site reinforcement	Concrete strength class ≥ C25/30			
Pos. 1 Lapping reinforcement	^			
Pos. 1	4 • H8	4 • H8	4 • H10	4 • H12
Lap length l0 [mm]	481	641	801	961
Pos. 2 Suspension reinforcement (anchoring with	stirrup or L)			
Pos. 2	2 • 2 • H8	2 • 2 • H10	2 • 2 • H12	2 • 2 • H16
Pos. 3 and Pos. 4 Side reinforcement	^			
Pos. 3 and 4	acc. to the specifications of the structural engineer			
Pos. 5 Wall reinforcement and lapping reinforcem	nent shear force bar			
Pos. 5	acc. to the specifications of the structural engineer			

Information about on-site reinforcement

- Alternative connection reinforcement is possible. For the determination of the lap length, the rules according to BS EN 1992-1-1 (EC2) and BS EN 1992-1-1/NA apply FA reduction of the required lap length with m_{Ed}/m_{Rd} is permitted.
- The indicative minimum concrete strength class of the external structural component is C32/40.

Installation

The Schöck Isokorb[®] T type W is delivered in various components (bottom section, middle section, intermediate section, upper section).

- > Depending on the quantity ordered, similar components will be on one pallet for purposes of transport safety.
- > The arrangement of components takes place on the building site in accordance with installation instructions.

Installation manual

Installation manual see Technical Information Schöck Isokorb® XT for reinforced concrete structures.

🗹 Check list

- Have the loads on the Schöck Isokorb[®] connection been specified at design level?
- Has the cantilevered system length or the system support width been taken as a basis?
- With the selection of the design table is the relevant concrete cover taken into account?
- Are the maximum allowable expansion joint spacings taken into account?
- Are the requirements with regard to fire protection explained and is the appropriate addendum entered in the Isokorb[®] type description in the implementation plans?
- Have the requirements for on-site reinforcement of connections been defined in each case?

Imprint

Published by:	Schöck Ltd			
	Staniford House			
	4 Wedgwood Road			
	Bicester			
	Oxfordshire			
	OX26 4UL			
	Telephone: 01865 290 890			
Copyright:	© 2019, Schöck Ltd			
	The contents of this publication must not be passed on to third parties, neither in full nor in part, without the written authorisation of Schöck Ltd. All technical details, drawings			
	etc. are protected by copyright laws.			

Subject to technical changes Date of publication: March 2020

Schöck Ltd Staniford House 4 Wedgwood Road Bicester Oxfordshire OX26 4UL Telephone: 01865 290 890 design@schoeck.co.uk www.schoeck.co.uk

Schöck Dependable by design

03.2020/GB/190778